Belguzar Karadag, Simge Er Zeybekler, Sultan Sacide Gelen, Leila Sabour-Takanlou, Maryam Sabour-Takanlou, Cigir Biray Avci, Dilek Odaci
{"title":"Electrodeposition of carbon nanotubes and conjugation of arginyl-glycyl-aspartic acid for the following of glioblastoma cells on bionanocomposites","authors":"Belguzar Karadag, Simge Er Zeybekler, Sultan Sacide Gelen, Leila Sabour-Takanlou, Maryam Sabour-Takanlou, Cigir Biray Avci, Dilek Odaci","doi":"10.1016/j.bioelechem.2025.108937","DOIUrl":null,"url":null,"abstract":"<div><div>The improvement of surface treatment methods that permit the tuning of cell adhesion on the surface of biomaterials and devices is of considerable importance. Here, multi-walled carbon nanotubes (MWCNT) were modified with 4-aminothiophenol (4ATP). Then, electrodeposition of MWCNT-4ATP was carried out on 4ATP-modified screen-printed gold electrodes (SP-Au). After conjugation of Arginyl-glycyl-aspartic acid <strong>(</strong>RGD)-peptide on Poly(MWCNT-4ATP), the adhesion of U-87MG glioblastoma cells was examined by differential pulse voltammetry (DPV) technique. The synthesized MWCNT-4ATP and the obtained Poly(MWCNT-4ATP)/RGD surfaces were characterized using Scanning Electron Microscopy-Energy Dispersive X-Ray Spectrometer (SEM-EDS), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Photoelectron Spectrometer (XPS). The linear range for U-87MG glioblastoma cells was 10<sup>2</sup>–10<sup>6</sup> cells/mL. The developed Poly(MWCNT-4ATP)/RGD cell adhesion platform provided monitoring of U-87MG glioblastoma cells using DPV technique and fluorescent imaging.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108937"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000404","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The improvement of surface treatment methods that permit the tuning of cell adhesion on the surface of biomaterials and devices is of considerable importance. Here, multi-walled carbon nanotubes (MWCNT) were modified with 4-aminothiophenol (4ATP). Then, electrodeposition of MWCNT-4ATP was carried out on 4ATP-modified screen-printed gold electrodes (SP-Au). After conjugation of Arginyl-glycyl-aspartic acid (RGD)-peptide on Poly(MWCNT-4ATP), the adhesion of U-87MG glioblastoma cells was examined by differential pulse voltammetry (DPV) technique. The synthesized MWCNT-4ATP and the obtained Poly(MWCNT-4ATP)/RGD surfaces were characterized using Scanning Electron Microscopy-Energy Dispersive X-Ray Spectrometer (SEM-EDS), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Photoelectron Spectrometer (XPS). The linear range for U-87MG glioblastoma cells was 102–106 cells/mL. The developed Poly(MWCNT-4ATP)/RGD cell adhesion platform provided monitoring of U-87MG glioblastoma cells using DPV technique and fluorescent imaging.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.