{"title":"Electrochemical biosensor based on composite of gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride and a caprolactone polymer for highly sensitive detection of CEA","authors":"Yunpeng Li, Xia Wang, Xinling Wang, Zhe Qin, Chong Li, Jing Yang, Mengmeng Cao","doi":"10.1016/j.bioelechem.2024.108897","DOIUrl":"10.1016/j.bioelechem.2024.108897","url":null,"abstract":"<div><div>Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-C<sub>3</sub>N<sub>4</sub>), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes. And ab1-CEA-ab2 formed a sandwich structure of ‘antibody-antigen-antibody’, which ensured the high selectivity of the biosensor. Furthermore, the introduction of caprolactone polymer (DMPA-PCL) significantly amplifies the impedance signal and improves the sensitivity of the analytical method. Scanning electron microscopy, x-ray diffraction, transmission electron microscopy Fourier transform infrared spectroscopy, and ultraviolet–visible spectrophotometry were used to characterise the prepared AuNPs/rGO/g-C<sub>3</sub>N<sub>4</sub> and DMPA-PCL. Under the optimal conditions, the sensor showed good analytical performance for the detection of CEA with a linear range of 100 fg mL<sup>−1</sup>–100 ng mL<sup>−1</sup> and a detection limit of 83.2 fg mL<sup>−1</sup>. And the sandwich-type immunosensor showed good selectivity and stability for the recognition of CEA in real samples.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108897"},"PeriodicalIF":4.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143155938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-30DOI: 10.1016/j.bioelechem.2024.108896
Yuanxun Gong , Jiayi Zhang , Zhao Lu , Jiahui Cai , Zichun Song , Jihua Wei , Chenyi Zhuo , Qianli Tang , Kai Zhang , Xianjiu Liao
{"title":"Dual signal amplification in ECL biosensors: A novel approach for argonaute2 detection using SAHARA CRISPR-Cas12a technology","authors":"Yuanxun Gong , Jiayi Zhang , Zhao Lu , Jiahui Cai , Zichun Song , Jihua Wei , Chenyi Zhuo , Qianli Tang , Kai Zhang , Xianjiu Liao","doi":"10.1016/j.bioelechem.2024.108896","DOIUrl":"10.1016/j.bioelechem.2024.108896","url":null,"abstract":"<div><div>Argonaute 2 (Ago2) is a crucial enzyme in the RNA interference (RNAi) pathway, essential for gene silencing via the cleavage of target messenger RNA (mRNA) mediated by microRNA (miRNA) or small interfering RNA (siRNA). The activity of Ago2 is a significant biomarker for various diseases, including cancer and viral infections, necessitating precise monitoring techniques. Traditional methods for detecting Ago2 activity are often cumbersome and lack the necessary sensitivity and specificity for low-abundance targets in complex samples. This study presents an innovative biosensor utilizing electrochemiluminescence (ECL) technology combined with the SAHARA (Split Activator for Highly Accessible RNA Analysis) CRISPR-Cas12a system to detect Ago2 activity with high sensitivity and specificity. The introduction of Blocker RNA in the activation mechanism enhances the specificity of CRISPR-Cas12a, ensuring accurate signal generation. The dual signal amplification strategy, combining RISC-assisted and CRISPR-Cas12a-mediated cleavage, enhances the biosensor’s sensitivity. The developed ECL biosensor demonstrated a remarkable limit of detection (LOD) of 0.145 aM, along with excellent precision, stability, and specificity. These attributes make it a powerful tool for detecting Ago2 activity in clinical diagnostics and research settings.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108896"},"PeriodicalIF":4.8,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-28DOI: 10.1016/j.bioelechem.2024.108895
Linhong Cao , Tianyu Wang , Jingling Xie , Yihua Wang , Yaxin Huang , Sijian Luo , Xiaoting Zhan , Hui Jiang , Liuxin Ran , Xing Jin , Jinbo Liu , Baolin Li
{"title":"Aptamer-based DNAzyme walker electrochemical biosensing strategy for Acinetobacter baumannii detection","authors":"Linhong Cao , Tianyu Wang , Jingling Xie , Yihua Wang , Yaxin Huang , Sijian Luo , Xiaoting Zhan , Hui Jiang , Liuxin Ran , Xing Jin , Jinbo Liu , Baolin Li","doi":"10.1016/j.bioelechem.2024.108895","DOIUrl":"10.1016/j.bioelechem.2024.108895","url":null,"abstract":"<div><div>In this study, an innovative electrochemical biosensor was developed for the rapid, specific, and sensitive detection of <em>Acinetobacter baumannii</em> without the need for sample pretreatment. The biosensor utilized an aptamer as a specific capture probe for <em>A. baumannii</em> and employed a self-powered DNAzyme walker cleavage cycle reaction to achieve signal amplification. Upon introduction of the target bacteria, the aptamer captured the bacteria and released the Trigger, activating the DNAzyme to cleave the substrate chain containing methylene blue (MB). This led to the release of MB-labeled DNA fragments from the electrode surface, resulting in a significant decrease in the square wave voltammetry (SWV) signal of MB on the sensing platform. The limit of detection (LOD) for <em>A. baumannii</em> was determined to be 30 CFU/mL, enabling discrimination of the target bacteria from other common clinical isolates. Furthermore, the biosensor’s potential for real sample analysis was demonstrated in cerebrospinal fluid (CSF), showcasing its efficacy and versatility as a biosensing tool with wide-ranging applications in disease diagnosis and bioanalysis.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108895"},"PeriodicalIF":4.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging self-signal amplifying poly(acrylic acid)/polyaniline electrodes for label-free electrochemical immunoassays in protein biomarker detection","authors":"Supakeit Chanarsa , Sopit Phetsang , Wiradej Thongsuwan , Thunwadee Limtharakul , Jidapha Tinoi , Jaroon Jakmunee , Kontad Ounnunkad","doi":"10.1016/j.bioelechem.2024.108894","DOIUrl":"10.1016/j.bioelechem.2024.108894","url":null,"abstract":"<div><div>Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency. The self-signal amplification properties of PANI streamline the detection process. At the same time, the high-density surface carboxyl groups from embedded PAA enable covalent conjugation with capture antibodies (anti-IgG and anti-AFP). Subsequently, antibody-immobilized PAA/PANI film-modified SPCEs, as immunosensors, successfully detect IgG and AFP without the need for external redox probes. The reductions in the electrochemical PANI signals of the immunosensors are linearly proportional to the logarithm of IgG and AFP concentrations. The proposed immunosensors exhibit sufficiently wide ranges of calibration curves from 0.10 to 50 ng mL<sup>−1</sup>, with limits of detection of 0.080 ng mL<sup>−1</sup> for IgG and 0.090 ng mL<sup>−1</sup> for AFP. The sensors exhibit satisfactory sensitivity and selectivity, indicating their potential for accurate and reliable detection.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108894"},"PeriodicalIF":4.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-27DOI: 10.1016/j.bioelechem.2024.108893
Sora Lee , Myung-Min Oh
{"title":"Electrocultivation of Arabidopsis thaliana increases water and mineral absorption, electric charge and auxin accumulation, enhancing growth and development","authors":"Sora Lee , Myung-Min Oh","doi":"10.1016/j.bioelechem.2024.108893","DOIUrl":"10.1016/j.bioelechem.2024.108893","url":null,"abstract":"<div><div>Numerous studies in various species have demonstrated that the application of an electric field can improve plant growth. However, plants showed inconsistent responses and the background mechanism for responses to electric fields remain unclear. Here, to deepen our understanding of the mechanisms involved in electric field–induced changes in physiology, we investigated the effects of electric fields on the growth and development of Arabidopsis (<em>Arabidopsis thaliana</em>). To this end, we cultivated Arabidopsis plants under 5 kV/m electric fields oriented vertically or horizontally. Regardless of the electric field direction, the exposed plants had significantly more leaves and greater biomass compared to the control group, which was not exposed to an additional electric field. Exposure to the electric fields also accelerated flowering. Auxin concentration in Arabidopsis leaves exhibited significant increase following exposure to electric field, supporting the enhanced shoot growth. Moreover, well-developed xylem and phloem under vertical electric fields facilitated increased absorption of water and nutrients. Gene ontology annotation and KEGG pathway analysis identified numerous electric field–responsive genes. Overall, this study elucidates mechanisms of the plant response to electric fields and represents a step towards developing technologies that enhance crop productivity.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108893"},"PeriodicalIF":4.8,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-26DOI: 10.1016/j.bioelechem.2024.108888
Yuan Ming , Yujie Liu , Daxiu Li , Bingying Jiang , Yun Xiang , Ruo Yuan
{"title":"Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay","authors":"Yuan Ming , Yujie Liu , Daxiu Li , Bingying Jiang , Yun Xiang , Ruo Yuan","doi":"10.1016/j.bioelechem.2024.108888","DOIUrl":"10.1016/j.bioelechem.2024.108888","url":null,"abstract":"<div><div>The concentration variation of luteinizing hormone (LH) regulates the cell cycle of oocyte meiosis and significantly affect the whole reproductive cycle. Sensitively quantifying the LH biomarker therefore plays an important role for reproductive disease diagnosis. By coupling a new low background catalytic redox recycling strategy with hybridization chain reaction (HCR), we propose a highly sensitive bio-electrochemical aptamer LH sensing method. LH analyte molecules bind aptamer strands in duplex DNAs to liberate ssDNAs, which trigger HCR generation of [Ru(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub> (RuHex)-modified dsDNA polymers on sensor electrode. Subsequent electrochemical redox recycling of RuHex mediated by K<sub>3</sub>[Fe(CN)<sub>6</sub>] thus exhibits greatly magnified currents for ultrasensitive LH assay. The synergistic integration of HCR signal amplification with low background redox recycling leads to highly enhanced signal-to-noise ratio and sensitivity for detecting LH down to 6.03 pM. In addition, LH sensing in diluted human serums has been tested and verified, making such sensor a robust detection platform for monitoring diverse biomarkers at low levels for early diagnosing diseases.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108888"},"PeriodicalIF":4.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-26DOI: 10.1016/j.bioelechem.2024.108891
Haitang Yang , Siming Pu , Penghua Shu , Jiapan Wang , YuYu Chen , Xinshuo Yang , Yuce Hou , Wei Wei
{"title":"A label-free electrochemical biosensor for sensitive analysis of the PARP-1 activity","authors":"Haitang Yang , Siming Pu , Penghua Shu , Jiapan Wang , YuYu Chen , Xinshuo Yang , Yuce Hou , Wei Wei","doi":"10.1016/j.bioelechem.2024.108891","DOIUrl":"10.1016/j.bioelechem.2024.108891","url":null,"abstract":"<div><div>Early diagnosis of tumors is becoming increasingly important in modern healthcare. <u>As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research</u>. Herein, an electrochemical biosensor for the sensitive monitoring of the PARP-1 activity have been proposed. The presence of target PARP-1 firstly triggers enzyme-initiated auto-PARylation and formed negatively charged polymer consisting of a few to 200 ADP-ribose units. Due to electrostatic adsorption, negatively charged PAR will bind with a large number of positively charged methylene blue (MB) electroactive molecules. By detecting the electrochemical signal of MB on the <u>indium tin oxide (ITO)</u> electrode, PARP-1 activity detection was achieved with a linear detection range of 0–1.0 U and a detection limit as low as 0.003 U. The proposed biosensor shows great prospects of clinical application.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108891"},"PeriodicalIF":4.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulfate reducing bacteria corrosion of a 90/10 Cu-Ni alloy coupled to an Al sacrificial anode","authors":"Huixuan Qian , Tianguan Wang , Peng Xu , Zhiyuan Feng , Bing Lei , Ping Zhang , Honglei Guo , Guozhe Meng","doi":"10.1016/j.bioelechem.2024.108892","DOIUrl":"10.1016/j.bioelechem.2024.108892","url":null,"abstract":"<div><div>This study investigates the corrosion of 90/10 copper-nickel (Cu-Ni) alloy caused by sulfate-reducing bacteria (SRB) in the presence of aluminum anodes, with particular emphasis on the role of electron supply in microbial corrosion and the resulting local corrosion failures. The study reveals that the electron supply from the anode supports SRB growth on the Cu-Ni alloy through an “Electrons-siphoning” mechanism. However, the supply is insufficient to sustain the SRB population, resulting in ineffective cathodic protection (<em>i</em><sub>corr</sub> = 2.34 × 10<sup>−6</sup> A cm<sup>−2</sup>). The addition of 20 ppm riboflavin (RF) to the SRB biofilm enhances electrical activity and increases the electron donor density, thereby restoring the anode’s protective effect. As a result, the <em>i</em><sub>corr</sub> of the 90/10 Cu-Ni alloy decreases by an order of magnitude (to 3.5 × 10<sup>−7</sup> A cm<sup>−2</sup>). These findings provide valuable new insights into the mechanisms of microbial corrosion.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108892"},"PeriodicalIF":4.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-25DOI: 10.1016/j.bioelechem.2024.108889
Xiaojun Liu , Huihui Dong , Qinyu Wang , Jing Yang , Xinru Zhai , Mingzhen Lin , Kaixin Liu , Qinzheng Yang
{"title":"Efficient nitrate removal via microorganism-iron oxide co-evolution on biocathode surface","authors":"Xiaojun Liu , Huihui Dong , Qinyu Wang , Jing Yang , Xinru Zhai , Mingzhen Lin , Kaixin Liu , Qinzheng Yang","doi":"10.1016/j.bioelechem.2024.108889","DOIUrl":"10.1016/j.bioelechem.2024.108889","url":null,"abstract":"<div><div>Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria. The surface chemical and biological analysis of the biocathode revealed that the ZVI gradually oxidized to form magnetite and goethite, and finally stabilized into better crystallized lepidocrocite. On the other hand, the microbial community of the biocathode gradually evolved into a community dominated by denitrifying bacteria, specifically <em>Clostridium</em>. The co-evolved “<em>Clostridium</em>-lepidocrocite” composite endows the sediment microbial fuel cell with a 99% nitrate removal capacity. These results indicate that the cathode constructed by using ZVI modified electrode achieves efficient nitrate reduction by denitrifying bacteria. Furthermore, the construction method of biocathode may also have the potential application in water remediation and the geochemical cycling of elements.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108889"},"PeriodicalIF":4.8,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioelectrochemistryPub Date : 2024-12-24DOI: 10.1016/j.bioelechem.2024.108885
Lu Yang , Yang Wu , Songpei Hu , Jiafeng Yao , Fangming Chen
{"title":"An electrical characteristics extraction and analysis method for the membrane of medaka embryo during its development using electrical impedance spectroscopy","authors":"Lu Yang , Yang Wu , Songpei Hu , Jiafeng Yao , Fangming Chen","doi":"10.1016/j.bioelechem.2024.108885","DOIUrl":"10.1016/j.bioelechem.2024.108885","url":null,"abstract":"<div><div>An electrical characteristics extraction and analysis method for membrane of medaka embryo during its development using Electrical Impedance Spectroscopy (EIS) is proposed. The proposed method is non-invasive, it doesn’t affect the embryo’s development. Embryo’s equivalent electrical circuit (EEC) model is established to extract membrane’s electrical characteristics, it is used to fit the embryo’s electrical impedance curves in different developmental stages. The equivalent resistances and capacitances of membrane are regarded as the electrical characteristics to analyze the membrane’s physiological changes during embryo’s development. To achieve the embryo’s electrical impedance curve from the measurement system exactly, an EIT-assisted electrical impedance curve extraction method is innovatively introduced. The extracted electrical characteristics of the membrane reflect its physiological changes well in both simulation and experiment. In experiment, the equivalent capacitances of embryo’s membrane are increasing, while the equivalent resistances show a downward trend from neurula stage to hatching stage. The experiment results indicate that the permeability of membrane becomes higher and the thickness of membrane becomes thinner from neurula stage to hatching stage.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108885"},"PeriodicalIF":4.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}