Yana Karnitskaya , Maryia Drobysh , Almira Ramanaviciene , Agne Rimkute , Indre Kucinskaite-Kodze , Greta Zvirzdine , Rimantas Slibinskas , Oksana Pogorielova , Viktoriia Korniienko , Arunas Ramanavicius
{"title":"The assessment of interaction kinetics between specific monoclonal antibody and immobilized SARS-CoV-2 nucleoprotein","authors":"Yana Karnitskaya , Maryia Drobysh , Almira Ramanaviciene , Agne Rimkute , Indre Kucinskaite-Kodze , Greta Zvirzdine , Rimantas Slibinskas , Oksana Pogorielova , Viktoriia Korniienko , Arunas Ramanavicius","doi":"10.1016/j.bioelechem.2025.109090","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of SARS-CoV-2 has posed significant global health challenges. The nucleocapsid protein (N-protein) is a structural part of the SARS-CoV-2 virus and an important immunogenic target of specific antibodies, which are developed in the organism during the infection by this virus. Artificially designed specific (monoclonal and polyclonal) antibodies are also used for therapeutic and bioanalytical purposes, therefore, the assessment and characterization of newly designed antibodies is an important analytical issue. This study reports an electrochemical biosensing system for the assessment of the interaction between newly designed specific antibody and SARS-CoV-2 recombinant N-protein, against which the antibody was designed, and which was used as a target in biological recognition part of the biosensing system. The biosensing system was applied for the determination of the interaction kinetics between immobilized N-protein and a newly derived monoclonal antibody (mAb) 16D9 (mAb-16D9). Cyclic voltammetry was employed to evaluate the kinetics of the interaction between the recombinant N-protein and mAb-16D9. The binding constant (<em>K</em>c) was determined to be 50.99 μg/mL, demonstrating a strong affinity, while the limit of detection was 4.3 × 10<sup>−4</sup> μg/mL, highlighting sufficient affinity of mAb-16D9 towards N-protein, which determined good sensitivity of the developed biosensors. These findings highlight the potential application of the here-reported electrochemical biosensor for rapid testing of antigen-antibody interaction kinetics and the characterization of newly designed antibody.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"168 ","pages":"Article 109090"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425001938","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of SARS-CoV-2 has posed significant global health challenges. The nucleocapsid protein (N-protein) is a structural part of the SARS-CoV-2 virus and an important immunogenic target of specific antibodies, which are developed in the organism during the infection by this virus. Artificially designed specific (monoclonal and polyclonal) antibodies are also used for therapeutic and bioanalytical purposes, therefore, the assessment and characterization of newly designed antibodies is an important analytical issue. This study reports an electrochemical biosensing system for the assessment of the interaction between newly designed specific antibody and SARS-CoV-2 recombinant N-protein, against which the antibody was designed, and which was used as a target in biological recognition part of the biosensing system. The biosensing system was applied for the determination of the interaction kinetics between immobilized N-protein and a newly derived monoclonal antibody (mAb) 16D9 (mAb-16D9). Cyclic voltammetry was employed to evaluate the kinetics of the interaction between the recombinant N-protein and mAb-16D9. The binding constant (Kc) was determined to be 50.99 μg/mL, demonstrating a strong affinity, while the limit of detection was 4.3 × 10−4 μg/mL, highlighting sufficient affinity of mAb-16D9 towards N-protein, which determined good sensitivity of the developed biosensors. These findings highlight the potential application of the here-reported electrochemical biosensor for rapid testing of antigen-antibody interaction kinetics and the characterization of newly designed antibody.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.