Aerobic mild bioelectrocatalysis: Disentangling dual redox pathways for H2 evolution amidst competing oxygen reduction in S. cerevisiae biofilm

IF 4.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Graziela C. Sedenho , Rodrigo M. Iost , Rafael L. Romano , Maykon L. Souza , Fabio H.B. de Lima , Frank N. Crespilho
{"title":"Aerobic mild bioelectrocatalysis: Disentangling dual redox pathways for H2 evolution amidst competing oxygen reduction in S. cerevisiae biofilm","authors":"Graziela C. Sedenho ,&nbsp;Rodrigo M. Iost ,&nbsp;Rafael L. Romano ,&nbsp;Maykon L. Souza ,&nbsp;Fabio H.B. de Lima ,&nbsp;Frank N. Crespilho","doi":"10.1016/j.bioelechem.2025.109093","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial H<sub>2</sub> production is traditionally restricted by the oxygen sensitivity of hydrogenase enzymes, limiting their effective use to anaerobic environments. In this study, we demonstrate that <em>S. cerevisiae</em>, lacking conventional hydrogenases, exhibits an exceptional ability for H<sub>2</sub> evolution in oxygen-rich conditions. At pH 7.2 and 25 °C, <em>S. cerevisiae</em> biofilms catalyze hydrogen production with a near-zero overpotential (40 mV), made possible by a redox-active extracellular polymeric substance (EPS) matrix enriched with flavoproteins. We highlight the potential of <em>S. cerevisiae</em> as an oxygen-resistant biocatalyst for sustainable biohydrogen production and discuss its application in ambient-condition bioelectrochemical systems.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"167 ","pages":"Article 109093"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425001963","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial H2 production is traditionally restricted by the oxygen sensitivity of hydrogenase enzymes, limiting their effective use to anaerobic environments. In this study, we demonstrate that S. cerevisiae, lacking conventional hydrogenases, exhibits an exceptional ability for H2 evolution in oxygen-rich conditions. At pH 7.2 and 25 °C, S. cerevisiae biofilms catalyze hydrogen production with a near-zero overpotential (40 mV), made possible by a redox-active extracellular polymeric substance (EPS) matrix enriched with flavoproteins. We highlight the potential of S. cerevisiae as an oxygen-resistant biocatalyst for sustainable biohydrogen production and discuss its application in ambient-condition bioelectrochemical systems.

Abstract Image

好氧温和生物电催化:在酿酒酵母生物膜的竞争性氧还原中,解开H2进化的双氧化还原途径
微生物制氢传统上受到氢酶氧敏感性的限制,限制了它们在厌氧环境中的有效利用。在这项研究中,我们证明了酿酒酵母缺乏传统的氢化酶,在富氧条件下表现出非凡的氢气进化能力。在pH 7.2和25°C下,酿酒酵母生物膜通过富含黄蛋白的氧化还原活性细胞外聚合物(EPS)基质,以接近于零的过电位(40 mV)催化制氢。我们强调了酿酒酵母作为可持续生物制氢的耐氧生物催化剂的潜力,并讨论了其在环境条件下生物电化学系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信