{"title":"Transfer Learning Enhanced Blood Pressure Monitoring Based on Flexible Optical Pulse Sensing Patch","authors":"Zecong Liu, Chao Xiang, Yeyu Tong, Kwai Hei Li, Xun Guan","doi":"10.1021/acssensors.4c03404","DOIUrl":"https://doi.org/10.1021/acssensors.4c03404","url":null,"abstract":"Blood pressure (BP), a crucial health biomarker, is essential for detecting early indications of cardiovascular disease in routine monitoring and clinical surveillance of inpatients. However, conventional cuff-based BP measurements are limited in providing continuous comfort monitoring. Here, we present an optical pulse sensing patch for BP monitoring, which integrates three units of Gallium Nitride (GaN) optopairs with micronanostructured polydimethylsiloxane films to capture pulse waves. Multipoint pulse signals are transformed into BP and other cardiovascular indicators through machine learning. The transfer learning method is developed to calibrate the machine learning model with few training sets, simplifying the practical implementation. The developed sensing patch holds great potential for long-term, precise BP monitoring, enhancing clinical diagnosis, and management of cardiovascular diseases.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"119 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143837479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-14DOI: 10.1021/acssensors.4c03681
Qikun Wei, Daniel Rojas, Qianyu Wang, Ruben Zapata-Pérez, Xing Xuan, Águeda Molinero-Fernández, Gastón A. Crespo, María Cuartero
{"title":"Wearable 3D-Printed Microneedle Sensor for Intradermal Temperature Monitoring","authors":"Qikun Wei, Daniel Rojas, Qianyu Wang, Ruben Zapata-Pérez, Xing Xuan, Águeda Molinero-Fernández, Gastón A. Crespo, María Cuartero","doi":"10.1021/acssensors.4c03681","DOIUrl":"https://doi.org/10.1021/acssensors.4c03681","url":null,"abstract":"Accurate temperature monitoring plays a crucial role in understanding the physiological status of patients and the early diagnosis of diseases commonly associated with local and global infections. Intradermal temperature measurement is, in principle, more precise than skin surface detection, as it prevents interference from environmental temperature changes and skin secretions. However, to date, precise and reliable intradermal temperature monitoring in a real-time and continuous manner remains a challenge. We propose herein high-resolution 3D printing to fabricate a mechanically robust and biocompatible hollow microneedle, filled with a temperature-responsive conducting polymer (poly(3,4-ethylenedioxythiophene): polystyrenesulfonate, PEDOT:PSS) to develop a microneedle temperature sensor (T-MN). The significance is 2-fold: rational design of robust MNs with high resolution in the micrometer domain and the implementation of a conducting polymer in a MN format for temperature sensing. The analytical performance of the developed T-MN is in vitro evaluated under mimicked intradermal conditions, demonstrating good sensitivity (−0.74%° C<sup>–1</sup>), resolution (0.2 °C), repeatability (RSD = 2%), reproducibility (RSD = 2%), reversibility, and medium-term stability. On-body temperature monitoring is performed on six euthanized rats for 80 min. The results presented good agreement with those obtained using a commercial optical temperature probe, which was intradermally inserted into the rat skin. The reliability of utilizing the T-MN for precise and continuous intradermal temperature monitoring was successfully demonstrated, noting its potential use for patient monitoring in the near future but also temperature compensation for MN (bio)sensors that may need it.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"26 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-12DOI: 10.1021/acssensors.4c02841
Di Wei, Yingshu Dai, Xixian Yan, Daoguo Lan, Jiayang Liao, Zhengbang Qin, Nanyan Fu
{"title":"A Novel “Double-Responsive” and “Dual-Targeted” Multifunctional Fluorescent Probe Monitors the Level Changes of ONOO– in Mitochondria during Cell Pyroptosis","authors":"Di Wei, Yingshu Dai, Xixian Yan, Daoguo Lan, Jiayang Liao, Zhengbang Qin, Nanyan Fu","doi":"10.1021/acssensors.4c02841","DOIUrl":"https://doi.org/10.1021/acssensors.4c02841","url":null,"abstract":"Pyroptosis, often referred to as inflammatory necrosis, is a type of programmed cell death, characterized by the swelling of cells until the cell membranes rupture, resulting in the release of intracellular substances and a strong inflammatory response. Lipid droplets and mitochondria play important roles in cellular activities. A strong correlation exists between pyroptosis and mitochondrial dysfunction, which can be reflected through physiological functions and involves changes in the mitochondrial microenvironment and morphology. In this work, a “double-responsive” and “dual-targeted” fluorescent probe named <b>WD-2</b> was constructed. It has excellent response performance to viscosity and ONOO<sup>–</sup>, and can simultaneously monitor the relevant levels in lipid droplets and mitochondria. Its remarkable targeting ability toward mitochondria and lipid droplets has been verified through colocalization experiments. In cell imaging experiments, the interaction between mitochondria and lipid droplets during nutritional stress was preliminarily studied. With the help of doxorubicin hydrochloride, the changes in the level of ONOO<sup>–</sup> in mitochondria during pyroptosis were explored, providing a new perspective for understanding the mechanism of this process.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"1 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-12DOI: 10.1021/acssensors.4c0284110.1021/acssensors.4c02841
Di Wei, Yingshu Dai, Xixian Yan, Daoguo Lan, Jiayang Liao, Zhengbang Qin and Nanyan Fu*,
{"title":"A Novel “Double-Responsive” and “Dual-Targeted” Multifunctional Fluorescent Probe Monitors the Level Changes of ONOO– in Mitochondria during Cell Pyroptosis","authors":"Di Wei, Yingshu Dai, Xixian Yan, Daoguo Lan, Jiayang Liao, Zhengbang Qin and Nanyan Fu*, ","doi":"10.1021/acssensors.4c0284110.1021/acssensors.4c02841","DOIUrl":"https://doi.org/10.1021/acssensors.4c02841https://doi.org/10.1021/acssensors.4c02841","url":null,"abstract":"<p >Pyroptosis, often referred to as inflammatory necrosis, is a type of programmed cell death, characterized by the swelling of cells until the cell membranes rupture, resulting in the release of intracellular substances and a strong inflammatory response. Lipid droplets and mitochondria play important roles in cellular activities. A strong correlation exists between pyroptosis and mitochondrial dysfunction, which can be reflected through physiological functions and involves changes in the mitochondrial microenvironment and morphology. In this work, a “double-responsive” and “dual-targeted” fluorescent probe named <b>WD-2</b> was constructed. It has excellent response performance to viscosity and ONOO<sup>–</sup>, and can simultaneously monitor the relevant levels in lipid droplets and mitochondria. Its remarkable targeting ability toward mitochondria and lipid droplets has been verified through colocalization experiments. In cell imaging experiments, the interaction between mitochondria and lipid droplets during nutritional stress was preliminarily studied. With the help of doxorubicin hydrochloride, the changes in the level of ONOO<sup>–</sup> in mitochondria during pyroptosis were explored, providing a new perspective for understanding the mechanism of this process.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 4","pages":"2542–2553 2542–2553"},"PeriodicalIF":8.2,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-11DOI: 10.1021/acssensors.4c01892
Ane I. Aranburu, Mikel Elorza, Pablo R.G. Valle, Ariadna Pazos, Alexey Brodolin, Pablo Herrero-Gómez, J. Eduardo Barcelon, Gabriel Molina-Terriza, Francesc Monrabal, Celia Rogero, Fernando P. Cossío, Juan José Gómez-Cadenas, Claire Tonnelé, Zoraida Freixa, the NEXT Collaboration
{"title":"Iridium-Based Time-Resolved Luminescent Sensor for Ba2+ Detection","authors":"Ane I. Aranburu, Mikel Elorza, Pablo R.G. Valle, Ariadna Pazos, Alexey Brodolin, Pablo Herrero-Gómez, J. Eduardo Barcelon, Gabriel Molina-Terriza, Francesc Monrabal, Celia Rogero, Fernando P. Cossío, Juan José Gómez-Cadenas, Claire Tonnelé, Zoraida Freixa, the NEXT Collaboration","doi":"10.1021/acssensors.4c01892","DOIUrl":"https://doi.org/10.1021/acssensors.4c01892","url":null,"abstract":"We present a new time-resolved chemosensor for the detection of Ba<sup>2+</sup> ions. Our sensor is based on an iridium(III) compound with dual (fluorescent and phosphorescent) emission. The nature of the luminescence response of the sensor depends on its state; specifically, the phosphorescence emission of the free state at long wavelengths is strongly suppressed, while that of the Ba<sup>2+</sup>-chelated compound is strongly enhanced. Furthermore, the residual phosphorescence emission of the free compound decays with two short decay constants, τ<sub>free</sub><sup>1</sup> ∼ 3.5 ns (88%) and τ<sub>free</sub><sup>2</sup> ∼ 209 ns (12%), while the chelated compound decays with two long decay constants, τ<sub>bound</sub><sup>1</sup> ∼ 429 ns (21%) and τ<sub>bound</sub><sup>2</sup> ∼ 1128 ns (76%). This exceptional behavior, supported by quantum chemical calculations, allows a time-based separation between the signals of the free and the chelated species. Among other applications, our sensor could be the basis of a Ba<sup>2+</sup> tagging detector for neutrinoless double beta decay searches in xenon.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"197 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143819852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-11DOI: 10.1021/acssensors.4c0325010.1021/acssensors.4c03250
Parisa Dehghani*, Mostafa Salehirozveh, Ataollah Tajabadi, Chi Chung Yeung, Michael Lam, Hing Y. Leung and Vellaisamy A. L. Roy*,
{"title":"Next-Gen Point-of-Care Tool for Ultra-Sensitive Detection of Urinary Spermine for Prostate Cancer Diagnosis","authors":"Parisa Dehghani*, Mostafa Salehirozveh, Ataollah Tajabadi, Chi Chung Yeung, Michael Lam, Hing Y. Leung and Vellaisamy A. L. Roy*, ","doi":"10.1021/acssensors.4c0325010.1021/acssensors.4c03250","DOIUrl":"https://doi.org/10.1021/acssensors.4c03250https://doi.org/10.1021/acssensors.4c03250","url":null,"abstract":"<p >Prostate cancer (PCa), the second most common cancer in men, demands effective early detection strategies. Elevated spermine levels in the prostate tissue contrast with decreased urinary concentrations in PCa patients. Here, we present a novel sensing platform combining differential pulse voltammetry and an extended gate field-effect transistor (EGFET) with a molecularly imprinted polymer|molecular imprinting (MIP) nanofilm for selective and sensitive spermine detection. Key advancements include successfully constructing and characterizing a pseudoreference electrode and a precisely engineered analyte binding interface. The Ag/AgCl pseudoreference electrode exhibited high reliability and reproducibility, optimized to enhance conductivity and minimize interference noises. Electrochemical analysis confirmed successful MIP modification, creating a precise 3D-imprinted binding interface. The platform accurately quantified spermine in artificial urine across concentrations from 0.1 to 1000 ng/mL, achieving a detection limit of 1.23 ng/mL. High selectivity was demonstrated against competing polyamines such as spermidine and histamine. Analysis of electrical properties indicated that spermine binding induced changes in surface potential, altering the metal-oxide-semiconductor field-effect transistor threshold voltage and validating the system’s sensitivity. The system’s superior performance was confirmed with a high imprinting factor (IF ≈ 4.1) and sensitivity 10 times higher compared to nonimprinted polymers. Hill–Langmuir analysis confirmed a strong binding affinity to spermine. Clinical validation using human urine samples from PCa diagnostic evaluations demonstrated high consistency with liquid chromatography mass spectrometry, exhibiting an excellent linear correlation (<i>R</i><sup>2</sup> = 0.97) without statistically significant differences (<i>p</i>-value <0.0001). This study introduces a robust, miniaturized, and cost-effective EGFET-based sensor for spermine detection, offering substantial potential for clinical diagnostics and PCa biomarker monitoring.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 4","pages":"2640–2651 2640–2651"},"PeriodicalIF":8.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssensors.4c03250","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible and Stretchable Electrochemical Sensor Merging the Multifunction of Monitoring Movement and Rapid Visual Signal Transmission","authors":"Sijie Zhou, Wanjin Hu, Xiaofeng Wang, Mengyao Cai, Xinjie Wei, Jieyao Qin, Xuelin Wang, Zhuan Fu, Junyao Gong, Chunhua Zhang, Weilin Xu* and Liangjun Xia*, ","doi":"10.1021/acssensors.4c0370910.1021/acssensors.4c03709","DOIUrl":"https://doi.org/10.1021/acssensors.4c03709https://doi.org/10.1021/acssensors.4c03709","url":null,"abstract":"<p >Noninvasive detection sensors for comfort and moisture absorption are popular for personalized health monitoring, yet integrated sensors that enable the on-demand detection of both physical and chemical indexes remain significantly challenging. Herein, we report a multifunctional fiber-based flexible sensing yarn for improved electrochemical and resistance sensing performance for in situ sweat activating and monitoring of body motion as well as the distinct color variation derived from the pH of sweat. The core–shell structure of the composite yarn (TSY) consists of a core layer of direct wet-spun twisted polyurethane fibers mixed with carbon black and a hydrophilic fiber layer of conductive zinc wires and colored lyocell fiber through the braiding method. The internal confined space between the core–shell layers can induce ion enrichment in sweat, enhancing the electrochemical sensing ability in capturing 0.5 μL of sweat, while the space-separated design can further isolate the interference so that pH and motion can be analyzed. Additionally, the colored hydrophilic lyocell fiber can transmit visual signals by the variance of color derived from the characterization of natural dyes in the process of adsorption of sweat. The designed TSY represents a promising integrated system capable of real-time monitoring of the chemical composition of sweat and the exercise conditions of movement.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 4","pages":"2957–2967 2957–2967"},"PeriodicalIF":8.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-11DOI: 10.1021/acssensors.4c03250
Parisa Dehghani, Mostafa Salehirozveh, Ataollah Tajabadi, Chi Chung Yeung, Michael Lam, Hing Y. Leung, Vellaisamy A. L. Roy
{"title":"Next-Gen Point-of-Care Tool for Ultra-Sensitive Detection of Urinary Spermine for Prostate Cancer Diagnosis","authors":"Parisa Dehghani, Mostafa Salehirozveh, Ataollah Tajabadi, Chi Chung Yeung, Michael Lam, Hing Y. Leung, Vellaisamy A. L. Roy","doi":"10.1021/acssensors.4c03250","DOIUrl":"https://doi.org/10.1021/acssensors.4c03250","url":null,"abstract":"Prostate cancer (PCa), the second most common cancer in men, demands effective early detection strategies. Elevated spermine levels in the prostate tissue contrast with decreased urinary concentrations in PCa patients. Here, we present a novel sensing platform combining differential pulse voltammetry and an extended gate field-effect transistor (EGFET) with a molecularly imprinted polymer|molecular imprinting (MIP) nanofilm for selective and sensitive spermine detection. Key advancements include successfully constructing and characterizing a pseudoreference electrode and a precisely engineered analyte binding interface. The Ag/AgCl pseudoreference electrode exhibited high reliability and reproducibility, optimized to enhance conductivity and minimize interference noises. Electrochemical analysis confirmed successful MIP modification, creating a precise 3D-imprinted binding interface. The platform accurately quantified spermine in artificial urine across concentrations from 0.1 to 1000 ng/mL, achieving a detection limit of 1.23 ng/mL. High selectivity was demonstrated against competing polyamines such as spermidine and histamine. Analysis of electrical properties indicated that spermine binding induced changes in surface potential, altering the metal-oxide-semiconductor field-effect transistor threshold voltage and validating the system’s sensitivity. The system’s superior performance was confirmed with a high imprinting factor (IF ≈ 4.1) and sensitivity 10 times higher compared to nonimprinted polymers. Hill–Langmuir analysis confirmed a strong binding affinity to spermine. Clinical validation using human urine samples from PCa diagnostic evaluations demonstrated high consistency with liquid chromatography mass spectrometry, exhibiting an excellent linear correlation (<i>R</i><sup>2</sup> = 0.97) without statistically significant differences (<i>p</i>-value <0.0001). This study introduces a robust, miniaturized, and cost-effective EGFET-based sensor for spermine detection, offering substantial potential for clinical diagnostics and PCa biomarker monitoring.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"4 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143819853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2025-04-11DOI: 10.1021/acssensors.4c0189210.1021/acssensors.4c01892
Ane I. Aranburu, Mikel Elorza, Pablo R.G. Valle, Ariadna Pazos, Alexey Brodolin, Pablo Herrero-Gómez, J. Eduardo Barcelon, Gabriel Molina-Terriza, Francesc Monrabal, Celia Rogero, Fernando P. Cossío, Juan José Gómez-Cadenas, Claire Tonnelé*, Zoraida Freixa* and
{"title":"Iridium-Based Time-Resolved Luminescent Sensor for Ba2+ Detection","authors":"Ane I. Aranburu, Mikel Elorza, Pablo R.G. Valle, Ariadna Pazos, Alexey Brodolin, Pablo Herrero-Gómez, J. Eduardo Barcelon, Gabriel Molina-Terriza, Francesc Monrabal, Celia Rogero, Fernando P. Cossío, Juan José Gómez-Cadenas, Claire Tonnelé*, Zoraida Freixa* and ","doi":"10.1021/acssensors.4c0189210.1021/acssensors.4c01892","DOIUrl":"https://doi.org/10.1021/acssensors.4c01892https://doi.org/10.1021/acssensors.4c01892","url":null,"abstract":"<p >We present a new time-resolved chemosensor for the detection of Ba<sup>2+</sup> ions. Our sensor is based on an iridium(III) compound with dual (fluorescent and phosphorescent) emission. The nature of the luminescence response of the sensor depends on its state; specifically, the phosphorescence emission of the free state at long wavelengths is strongly suppressed, while that of the Ba<sup>2+</sup>-chelated compound is strongly enhanced. Furthermore, the residual phosphorescence emission of the free compound decays with two short decay constants, τ<sub>free</sub><sup>1</sup> ∼ 3.5 ns (88%) and τ<sub>free</sub><sup>2</sup> ∼ 209 ns (12%), while the chelated compound decays with two long decay constants, τ<sub>bound</sub><sup>1</sup> ∼ 429 ns (21%) and τ<sub>bound</sub><sup>2</sup> ∼ 1128 ns (76%). This exceptional behavior, supported by quantum chemical calculations, allows a time-based separation between the signals of the free and the chelated species. Among other applications, our sensor could be the basis of a Ba<sup>2+</sup> tagging detector for neutrinoless double beta decay searches in xenon.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 4","pages":"2487–2498 2487–2498"},"PeriodicalIF":8.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible and Stretchable Electrochemical Sensor Merging the Multifunction of Monitoring Movement and Rapid Visual Signal Transmission","authors":"Sijie Zhou, Wanjin Hu, Xiaofeng Wang, Mengyao Cai, Xinjie Wei, Jieyao Qin, Xuelin Wang, Zhuan Fu, Junyao Gong, Chunhua Zhang, Weilin Xu, Liangjun Xia","doi":"10.1021/acssensors.4c03709","DOIUrl":"https://doi.org/10.1021/acssensors.4c03709","url":null,"abstract":"Noninvasive detection sensors for comfort and moisture absorption are popular for personalized health monitoring, yet integrated sensors that enable the on-demand detection of both physical and chemical indexes remain significantly challenging. Herein, we report a multifunctional fiber-based flexible sensing yarn for improved electrochemical and resistance sensing performance for in situ sweat activating and monitoring of body motion as well as the distinct color variation derived from the pH of sweat. The core–shell structure of the composite yarn (TSY) consists of a core layer of direct wet-spun twisted polyurethane fibers mixed with carbon black and a hydrophilic fiber layer of conductive zinc wires and colored lyocell fiber through the braiding method. The internal confined space between the core–shell layers can induce ion enrichment in sweat, enhancing the electrochemical sensing ability in capturing 0.5 μL of sweat, while the space-separated design can further isolate the interference so that pH and motion can be analyzed. Additionally, the colored hydrophilic lyocell fiber can transmit visual signals by the variance of color derived from the characterization of natural dyes in the process of adsorption of sweat. The designed TSY represents a promising integrated system capable of real-time monitoring of the chemical composition of sweat and the exercise conditions of movement.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"60 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}