ACS SensorsPub Date : 2024-11-09DOI: 10.1002/aenm.202404285
Tianyue Gao, Leanna Schulte, Langqiu Xiao, Eisuke Yamamoto, Amy S. Metlay, Colton J. Sheehan, Sariah Marth, Heemin Park, Sayantan Sasmal, Francisco J. Galang, Chulsung Bae, Adam Z. Weber, Shannon W. Boettcher, Thomas E. Mallouk
{"title":"Bipolar Membranes With Controlled, Microscale 3D Junctions Enhance the Rates of Water Dissociation and Formation","authors":"Tianyue Gao, Leanna Schulte, Langqiu Xiao, Eisuke Yamamoto, Amy S. Metlay, Colton J. Sheehan, Sariah Marth, Heemin Park, Sayantan Sasmal, Francisco J. Galang, Chulsung Bae, Adam Z. Weber, Shannon W. Boettcher, Thomas E. Mallouk","doi":"10.1002/aenm.202404285","DOIUrl":"https://doi.org/10.1002/aenm.202404285","url":null,"abstract":"A soft lithographic method is developed for making bipolar membranes (BPMs) with catalytic junctions formed from arrays of vertically oriented microscale cylinders. The membranes are cast from reusable polydimethylsiloxane (PDMS) molds made from silicon masters, which are fabricated on 2″ to 4″ wafer scales by nanosphere lithography. High‐aspect‐ratio junctions are made on a length scale similar to the thickness of optimized catalyst layers for water dissociation, creating a platform for probing the dual effects of catalysis and local electric field at the microscale BPM junction. Optimized polymer materials and nanoscale metal oxide catalysts are used in this study. 3D BPMs are tested under reverse and forward bias conditions, exhibiting superior performance relative to their 2D counterparts. Under forward bias in H<jats:sub>2</jats:sub>‐O<jats:sub>2</jats:sub> fuel cells, 3D BPMs achieve a current density of 1500 mA cm<jats:sup>−2</jats:sup>, ≈7 times higher than 2D membranes made from the same materials.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"20 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2024-11-09DOI: 10.1002/aenm.202404266
Shaoqing Zhang, Renjie Ren, Jing Cao, Dezheng Zhang, Jingsen Bai, Ce Han, Li Xiao, Lin Zhuang, Ping Song, Weilin Xu
{"title":"Ru‐MnO Heterostructure Clusters Toward Efficient and CO‐Tolerant Alkaline Hydrogen Oxidation Reaction","authors":"Shaoqing Zhang, Renjie Ren, Jing Cao, Dezheng Zhang, Jingsen Bai, Ce Han, Li Xiao, Lin Zhuang, Ping Song, Weilin Xu","doi":"10.1002/aenm.202404266","DOIUrl":"https://doi.org/10.1002/aenm.202404266","url":null,"abstract":"Designing efficient and CO‐tolerant catalysts for hydrogen oxidation reaction (HOR) in anode is one of the challenges for alkaline exchange membrane fuel cells in practical application. Herein, Ru‐MnO heterostructure with two adjacent clusters supported on commercial carbon (BP 2000) (denoted as Ru‐MnO/C) is designed to accelerate the sluggish kinetics of alkaline HOR. The cluster–cluster heterostructure interface modifies the electronic structure of Ru sites with electron transfer from Ru to MnO, then optimizes the adsorption of intermediates on Ru sites. Consequently, this catalyst exhibits high catalytic HOR activities in alkaline media with high exchange current density (3.71 mA cm<jats:sup>−2</jats:sup>) and mass activity (0.78 A mg<jats:sub>Ru</jats:sub><jats:sup>−1</jats:sup>). Meanwhile, the alkaline exchange membrane fuel cell delivers a specific peak power density (PPD) of 7.0 W mg<jats:sup>−1</jats:sup><jats:sub>Ru</jats:sub> under H<jats:sub>2</jats:sub>/O<jats:sub>2</jats:sub> condition, which is higher than that of most reported catalysts. More importantly, the catalyst also demonstrates the remarkable stability and CO‐tolerance. This work presents the superiority of cluster–cluster heterostructure interface toward efficient HOR, which is expected to further enlighten the design of advanced catalysts for electrocatalysis.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"18 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2024-11-09DOI: 10.1002/aenm.202403432
Si Zhao, Xudong Chen, Yan Wang, Zhensheng Hong, Lituo Zheng, Yan Zhang, Mingdeng Wei, Jun Lu
{"title":"Highly Reversible Sodium Metal Batteries Enabled by Extraordinary Alloying Reaction of Single‐Atom Antimony","authors":"Si Zhao, Xudong Chen, Yan Wang, Zhensheng Hong, Lituo Zheng, Yan Zhang, Mingdeng Wei, Jun Lu","doi":"10.1002/aenm.202403432","DOIUrl":"https://doi.org/10.1002/aenm.202403432","url":null,"abstract":"The unique coordination configuration of single‐atom materials (SAMs) allows precise reaction control at atomic‐level and a potential of unusual electrochemical reaction. Nevertheless, it is a big challenge to prepare main group element with high loading content. Here, multifield‐regulated synthesis (MRS) technology is utilized to rapidly produce single‐atom antimony (Sb) metal with a high loading of 15 wt.%. Ab initio molecular dynamics simulations reveal the significantly enhanced reaction kinetics of Sb and nitrogen‐doped graphene by multi‐physics field coupling. Compared with common metallic Sb nanoparticles, atomically dispersed Sb displays remarkably improved electrochemical reaction kinetics and stable structure due to the negligible variation of stresses and volume expansion during the pseudocapacitive alloying‐dealloying process. Such extraordinary alloying reaction in well‐dispersed Sb atoms enabling homogeneous ion flow can serve as active nucleation sites for regulating even Na metal nucleation and growth. As a result, copper foil coated with only ≈3 µm thickness of such material exhibits a high Coulombic efficiency of up to 99.99%, an ultra‐low overpotential of 3 mV, and a long lifetime exceeding 2500 h in symmetrical cells. Furthermore, an anode‐free MRS‐SbSA||Na<jats:sub>3</jats:sub>V<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> battery is constructed, which demonstrates exceptionally high energy density (≈362 Wh Kg<jats:sup>−1</jats:sup>), outstanding rate capability and good cycling stability.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"147 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Embedding Plate‐Like Pyrochlore in Perovskite Phase to Enhance Energy Storage Performance of BNT‐Based Ceramic Capacitors","authors":"Simin Wang, Jin Qian, Guanglong Ge, Faqiang Zhang, Fei Yan, Jinfeng Lin, Luomeng Tang, Menghao Yang, Zhongbin Pan, Xiao Wei, Bo Shen, Zhifu Liu, Jiwei Zhai","doi":"10.1002/aenm.202403926","DOIUrl":"https://doi.org/10.1002/aenm.202403926","url":null,"abstract":"Next‐generation electrical and electronic systems rely on the development of efficient energy‐storage dielectric ceramic capacitors. However, achieving a synergistic enhancement in the polarization and in the breakdown field strength (<jats:italic>E</jats:italic><jats:sub>b</jats:sub>) presents a considerable challenge. Herein, a heterogeneous combination strategy involving embedding a high <jats:italic>E</jats:italic><jats:sub>b</jats:sub> plate‐like pyrochlore phase in a high‐polarization perovskite phase is proposed. The embedded plate‐like pyrochlore increases the breakdown field strength and promotes the dynamic polarization response. Meanwhile, the strong spin–orbit coupling effect of the 5d electrons is conducive to the maintenance of the high polarization value of the perovskite. Consequently, the prepared multilayer ceramic capacitor (MLCC) exhibits an ultrahigh <jats:italic>E</jats:italic><jats:sub>b</jats:sub> and a high polarization. More specifically, an energy storage density (<jats:italic>W</jats:italic><jats:sub>rec</jats:sub>) of 14.9 J cm<jats:sup>−3</jats:sup> with an efficiency of up to 93.4% is achieved for the optimized pyrochlore/perovskite phase. Furthermore, the MLCCs also exhibits an <jats:italic>W</jats:italic><jats:sub>rec</jats:sub> of ≈ 7.7 J cm<jats:sup>−3</jats:sup> ± 4.5% in the temperature range of −50–180 °C. Therefore, this heterogeneous combination strategy therefore provides a simple and effective method for improving the energy‐storage performances of dielectric ceramic capacitors.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"95 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2024-11-08DOI: 10.1002/aenm.202470186
Min Ji Kim, Minjeong Kim, Won Bae Sohn, JoonHyun Kang, Woong Kim, Jin Gu Kang
{"title":"Ultrahigh Energy Density and Ultrafast Response in Symmetric Microsupercapacitors with 3D Bicontinuous Pseudocapacitance (Adv. Energy Mater. 42/2024)","authors":"Min Ji Kim, Minjeong Kim, Won Bae Sohn, JoonHyun Kang, Woong Kim, Jin Gu Kang","doi":"10.1002/aenm.202470186","DOIUrl":"https://doi.org/10.1002/aenm.202470186","url":null,"abstract":"<b>Symmetric Microsupercapacitors</b>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"1 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2024-11-08DOI: 10.1002/aenm.202470184
{"title":"Masthead: (Adv. Energy Mater. 42/2024)","authors":"","doi":"10.1002/aenm.202470184","DOIUrl":"https://doi.org/10.1002/aenm.202470184","url":null,"abstract":"Click on the article title to read more.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS SensorsPub Date : 2024-11-07DOI: 10.1007/s13225-024-00545-8
Kevin D. Hyde, Alwasel Saleh, Herbert Dustin R. Aumentado, Teun Boekhout, Ishika Bera, Sabin Khyaju, Chitrabhanu S. Bhunjun, K. W. Thilini Chethana, Chayanard Phukhamsakda, Mingkwan Doilom, Vinodhini Thiyagaraja, Peter E. Mortimer, Sajeewa S. N. Maharachchikumbura, Sinang Hongsanan, Ruvishika S. Jayawardena, Wei Dong, Rajesh Jeewon, Fatimah Al-Otibi, Subodini N. Wijesinghe, Dhanushka N. Wanasinghe
{"title":"Fungal numbers: global needs for a realistic assessment","authors":"Kevin D. Hyde, Alwasel Saleh, Herbert Dustin R. Aumentado, Teun Boekhout, Ishika Bera, Sabin Khyaju, Chitrabhanu S. Bhunjun, K. W. Thilini Chethana, Chayanard Phukhamsakda, Mingkwan Doilom, Vinodhini Thiyagaraja, Peter E. Mortimer, Sajeewa S. N. Maharachchikumbura, Sinang Hongsanan, Ruvishika S. Jayawardena, Wei Dong, Rajesh Jeewon, Fatimah Al-Otibi, Subodini N. Wijesinghe, Dhanushka N. Wanasinghe","doi":"10.1007/s13225-024-00545-8","DOIUrl":"https://doi.org/10.1007/s13225-024-00545-8","url":null,"abstract":"<p>Estimates of global fungal diversity have varied widely, suggesting a range from fewer than one million to over 10 million species, with each of the estimates drawing data from various criteria. In 2022, <i>Fungal Diversity</i> published a special issue on fungal numbers. It had been hoped that the editorial would provide a more accurate account of the numbers of fungi. Instead, it was concluded that this was not possible based on present evidence and, some of the data necessary for accurate assessments was put forward, and the present paper expands on this short article. The review first looks at estimates of fungal numbers and what these estimates are based on. It then presents future research needs that will help us to gain a more accurate estimate of fungal numbers. This includes work that needs to be done in tropical rainforests, where the greatest diversity is expected, where whole rainforests, canopy diversity, and palm fungi are addressed. Case studies for lichens and associated fungi, soil and litter fungi, evidence from particle filtration, freshwater fungi, marine fungi, mushrooms, and yeasts will also be given. Once we have such information, we can obtain a more accurate estimate of fungal numbers.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"140 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}