{"title":"Crystalline Energy Funneling in Mixed-Ligand Zr-MOFs Drives Radical-Triggered ECL Amplification for Ultrasensitive Thrombin Sensing.","authors":"Ju-Zheng Wang,Yi-Xuan Li,Qiaoting Yang,Jérome Chauvin,Serge Cosnier,Xue-Ji Zhang,Dan Shan","doi":"10.1021/acssensors.5c02948","DOIUrl":null,"url":null,"abstract":"Harnessing crystalline architectures to direct exciton migration presents a promising avenue for electrochemiluminescence (ECL) signal amplification in biosensing. Herein, we report a structurally orchestrated ECL platform based on a mixed-ligand zirconium metal-organic framework (Zr-MOF), assembled from 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy) and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP). The nanoscale colocalization of donor-acceptor pairs within a crystalline lattice establishes an intraframework energy funneling pathway, enabling directional resonance energy transfer (RET) from TBAPy to ZnTCPP with an efficiency of up to 76.5%. Beyond RET, radical-triggered excitation involving TBAPy•- and superoxide (O2•-) further activates ZnTCPP-centered ECL emission, resulting in a 3-fold enhancement compared to single-ligand controls. By leveraging this synergistic amplification, an aptamer-gated, signal-off ECL biosensor was constructed for femtomolar-level thrombin detection (limit of detection: 0.47 fM) with exceptional selectivity. This work exemplifies a crystalline energy-programmed approach to coupling exciton dynamics with redox-active interfaces, offering a mechanistically traceable and highly sensitive platform for advanced bioanalytical applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"37 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c02948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Harnessing crystalline architectures to direct exciton migration presents a promising avenue for electrochemiluminescence (ECL) signal amplification in biosensing. Herein, we report a structurally orchestrated ECL platform based on a mixed-ligand zirconium metal-organic framework (Zr-MOF), assembled from 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy) and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP). The nanoscale colocalization of donor-acceptor pairs within a crystalline lattice establishes an intraframework energy funneling pathway, enabling directional resonance energy transfer (RET) from TBAPy to ZnTCPP with an efficiency of up to 76.5%. Beyond RET, radical-triggered excitation involving TBAPy•- and superoxide (O2•-) further activates ZnTCPP-centered ECL emission, resulting in a 3-fold enhancement compared to single-ligand controls. By leveraging this synergistic amplification, an aptamer-gated, signal-off ECL biosensor was constructed for femtomolar-level thrombin detection (limit of detection: 0.47 fM) with exceptional selectivity. This work exemplifies a crystalline energy-programmed approach to coupling exciton dynamics with redox-active interfaces, offering a mechanistically traceable and highly sensitive platform for advanced bioanalytical applications.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.