Crystalline Energy Funneling in Mixed-Ligand Zr-MOFs Drives Radical-Triggered ECL Amplification for Ultrasensitive Thrombin Sensing.

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Ju-Zheng Wang,Yi-Xuan Li,Qiaoting Yang,Jérome Chauvin,Serge Cosnier,Xue-Ji Zhang,Dan Shan
{"title":"Crystalline Energy Funneling in Mixed-Ligand Zr-MOFs Drives Radical-Triggered ECL Amplification for Ultrasensitive Thrombin Sensing.","authors":"Ju-Zheng Wang,Yi-Xuan Li,Qiaoting Yang,Jérome Chauvin,Serge Cosnier,Xue-Ji Zhang,Dan Shan","doi":"10.1021/acssensors.5c02948","DOIUrl":null,"url":null,"abstract":"Harnessing crystalline architectures to direct exciton migration presents a promising avenue for electrochemiluminescence (ECL) signal amplification in biosensing. Herein, we report a structurally orchestrated ECL platform based on a mixed-ligand zirconium metal-organic framework (Zr-MOF), assembled from 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy) and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP). The nanoscale colocalization of donor-acceptor pairs within a crystalline lattice establishes an intraframework energy funneling pathway, enabling directional resonance energy transfer (RET) from TBAPy to ZnTCPP with an efficiency of up to 76.5%. Beyond RET, radical-triggered excitation involving TBAPy•- and superoxide (O2•-) further activates ZnTCPP-centered ECL emission, resulting in a 3-fold enhancement compared to single-ligand controls. By leveraging this synergistic amplification, an aptamer-gated, signal-off ECL biosensor was constructed for femtomolar-level thrombin detection (limit of detection: 0.47 fM) with exceptional selectivity. This work exemplifies a crystalline energy-programmed approach to coupling exciton dynamics with redox-active interfaces, offering a mechanistically traceable and highly sensitive platform for advanced bioanalytical applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"37 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c02948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing crystalline architectures to direct exciton migration presents a promising avenue for electrochemiluminescence (ECL) signal amplification in biosensing. Herein, we report a structurally orchestrated ECL platform based on a mixed-ligand zirconium metal-organic framework (Zr-MOF), assembled from 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy) and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP). The nanoscale colocalization of donor-acceptor pairs within a crystalline lattice establishes an intraframework energy funneling pathway, enabling directional resonance energy transfer (RET) from TBAPy to ZnTCPP with an efficiency of up to 76.5%. Beyond RET, radical-triggered excitation involving TBAPy•- and superoxide (O2•-) further activates ZnTCPP-centered ECL emission, resulting in a 3-fold enhancement compared to single-ligand controls. By leveraging this synergistic amplification, an aptamer-gated, signal-off ECL biosensor was constructed for femtomolar-level thrombin detection (limit of detection: 0.47 fM) with exceptional selectivity. This work exemplifies a crystalline energy-programmed approach to coupling exciton dynamics with redox-active interfaces, offering a mechanistically traceable and highly sensitive platform for advanced bioanalytical applications.
混合配体Zr-MOFs晶体能量漏斗驱动自由基触发ECL扩增用于超灵敏凝血酶检测。
利用晶体结构来直接激子迁移为生物传感中的电化学发光(ECL)信号放大提供了一条有前途的途径。在此,我们报道了一个基于混合配体锆金属-有机框架(Zr-MOF)的ECL平台,该平台由1,3,6,8-四akis(对苯甲酸)芘(tapy)和四akis(4-羧基苯基)卟啉锌(ZnTCPP)组装而成。晶格内供体-受体对的纳米级共定位建立了一个框架内的能量漏斗通道,实现了从ttby到ZnTCPP的定向共振能量转移(RET),效率高达76.5%。在RET之外,涉及tbby•-和超氧化物(O2•-)的自由基触发激发进一步激活zntcpp中心的ECL发射,导致与单配体对照相比增强3倍。利用这种协同扩增,构建了一种适体门控、信号关闭的ECL生物传感器,用于飞摩尔水平的凝血酶检测(检测限:0.47 fM),具有特殊的选择性。这项工作举例说明了晶体能量编程方法将激子动力学与氧化还原活性界面耦合在一起,为先进的生物分析应用提供了一个机械可追溯和高度敏感的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信