bf2 -后修饰钴-卟啉共价有机框架用于NH3的高效特异性检测。

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Qi Liu,Binghan Hou,Qiang Li,Taotao Su,Yu Li,Yuexing Zhang,Youzhi Xu
{"title":"bf2 -后修饰钴-卟啉共价有机框架用于NH3的高效特异性检测。","authors":"Qi Liu,Binghan Hou,Qiang Li,Taotao Su,Yu Li,Yuexing Zhang,Youzhi Xu","doi":"10.1021/acssensors.5c02512","DOIUrl":null,"url":null,"abstract":"The development of high-performance ammonia (NH3) sensors is critical for environmental and industrial safety; however, conventional chemiresistive materials face challenges in sensitivity and humidity interference. This work presents a covalent organic framework synthesized by Co-5,10,15, 20-tetrakis (4-aminophenyl) (CoTAPP) and 2,5-dihydroxy terephthalaldehyde (DTA) postmodified with electron-deficient BF2 groups (COF-CoDT-BF2) to address these limitations. First, the construction of donor-acceptor interfaces between cobalt porphyrin and BF2 groups enhances charge transport while modulating Co-site electron density for optimized NH3 adsorption. Moreover, BF2 groups serve as secondary active sites, synergistically strengthening the NH3 adsorption anchoring. Hydrophobic transformation via BF2 incorporation enables stable operation across 0-98% relative humidity, overcoming water competition effects that plague conventional chemiresistive gas sensors (CGSs). The optimized COF-CoDT-BF2-based CGSs achieve record sensitivity (722.3% ppm-1), sub-ppb detection limit (0.9 ppb), excellent environmental tolerance, and stability. Density functional theory calculations corroborate the dual adsorption charge-transfer mechanism, while in situ spectroscopic analyses reveal reversible NH3 adsorption dynamics. This molecular engineering strategy establishes a paradigm for designing multifunctional sensing materials, paving the way for intelligent gas monitoring systems in precision agriculture and food safety detection.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"32 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BF2-Postmodified Cobalt-Porphyrin Covalent Organic Framework for High-Performance Specific Detection of NH3.\",\"authors\":\"Qi Liu,Binghan Hou,Qiang Li,Taotao Su,Yu Li,Yuexing Zhang,Youzhi Xu\",\"doi\":\"10.1021/acssensors.5c02512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high-performance ammonia (NH3) sensors is critical for environmental and industrial safety; however, conventional chemiresistive materials face challenges in sensitivity and humidity interference. This work presents a covalent organic framework synthesized by Co-5,10,15, 20-tetrakis (4-aminophenyl) (CoTAPP) and 2,5-dihydroxy terephthalaldehyde (DTA) postmodified with electron-deficient BF2 groups (COF-CoDT-BF2) to address these limitations. First, the construction of donor-acceptor interfaces between cobalt porphyrin and BF2 groups enhances charge transport while modulating Co-site electron density for optimized NH3 adsorption. Moreover, BF2 groups serve as secondary active sites, synergistically strengthening the NH3 adsorption anchoring. Hydrophobic transformation via BF2 incorporation enables stable operation across 0-98% relative humidity, overcoming water competition effects that plague conventional chemiresistive gas sensors (CGSs). The optimized COF-CoDT-BF2-based CGSs achieve record sensitivity (722.3% ppm-1), sub-ppb detection limit (0.9 ppb), excellent environmental tolerance, and stability. Density functional theory calculations corroborate the dual adsorption charge-transfer mechanism, while in situ spectroscopic analyses reveal reversible NH3 adsorption dynamics. This molecular engineering strategy establishes a paradigm for designing multifunctional sensing materials, paving the way for intelligent gas monitoring systems in precision agriculture and food safety detection.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c02512\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c02512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

高性能氨(NH3)传感器的发展对环境和工业安全至关重要;然而,传统的化学电阻材料在灵敏度和湿度干扰方面面临挑战。这项工作提出了一个共价有机框架,由co - 5,10,15,20四(4-氨基苯基)(CoTAPP)和2,5-二羟基对苯二甲酸(DTA)后修饰的缺电子BF2基团(COF-CoDT-BF2)合成。首先,在钴卟啉和BF2基团之间构建供体-受体界面,增强电荷输运,同时调节Co-site电子密度,优化NH3吸附。此外,BF2基团作为二级活性位点,协同强化NH3吸附锚定。通过加入BF2实现疏水转化,可以在0-98%的相对湿度下稳定运行,克服了困扰传统化学气体传感器(cgs)的水竞争效应。优化后的基于cof - codt - bf2的cgs具有创纪录的灵敏度(722.3% ppm-1),亚ppb检测限(0.9 ppb),优异的环境耐受性和稳定性。密度泛函理论计算证实了双重吸附电荷转移机制,而原位光谱分析揭示了可逆的NH3吸附动力学。这种分子工程策略为设计多功能传感材料建立了范例,为精准农业和食品安全检测中的智能气体监测系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BF2-Postmodified Cobalt-Porphyrin Covalent Organic Framework for High-Performance Specific Detection of NH3.
The development of high-performance ammonia (NH3) sensors is critical for environmental and industrial safety; however, conventional chemiresistive materials face challenges in sensitivity and humidity interference. This work presents a covalent organic framework synthesized by Co-5,10,15, 20-tetrakis (4-aminophenyl) (CoTAPP) and 2,5-dihydroxy terephthalaldehyde (DTA) postmodified with electron-deficient BF2 groups (COF-CoDT-BF2) to address these limitations. First, the construction of donor-acceptor interfaces between cobalt porphyrin and BF2 groups enhances charge transport while modulating Co-site electron density for optimized NH3 adsorption. Moreover, BF2 groups serve as secondary active sites, synergistically strengthening the NH3 adsorption anchoring. Hydrophobic transformation via BF2 incorporation enables stable operation across 0-98% relative humidity, overcoming water competition effects that plague conventional chemiresistive gas sensors (CGSs). The optimized COF-CoDT-BF2-based CGSs achieve record sensitivity (722.3% ppm-1), sub-ppb detection limit (0.9 ppb), excellent environmental tolerance, and stability. Density functional theory calculations corroborate the dual adsorption charge-transfer mechanism, while in situ spectroscopic analyses reveal reversible NH3 adsorption dynamics. This molecular engineering strategy establishes a paradigm for designing multifunctional sensing materials, paving the way for intelligent gas monitoring systems in precision agriculture and food safety detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信