Yeast最新文献

筛选
英文 中文
Efficient PCR-based gene targeting in isolates of the nonconventional yeast Debaryomyces hansenii. 基于PCR的高效基因靶向非常规酵母汉氏双核菌分离株。
IF 2.2 4区 生物学
Yeast Pub Date : 2023-11-01 Epub Date: 2023-10-23 DOI: 10.1002/yea.3902
Sondos Alhajouj, Selva Turkolmez, Tarad Abalkhail, Zeena Hadi Obaid Alwan, Daniel James Gilmour, Phil J Mitchell, Ewald H Hettema
{"title":"Efficient PCR-based gene targeting in isolates of the nonconventional yeast Debaryomyces hansenii.","authors":"Sondos Alhajouj, Selva Turkolmez, Tarad Abalkhail, Zeena Hadi Obaid Alwan, Daniel James Gilmour, Phil J Mitchell, Ewald H Hettema","doi":"10.1002/yea.3902","DOIUrl":"10.1002/yea.3902","url":null,"abstract":"<p><p>Debaryomyces hansenii is a yeast with considerable biotechnological potential as an osmotolerant, stress-tolerant oleaginous microbe. However, targeted genome modification tools are limited and require a strain with auxotrophic markers. Gene targeting by homologous recombination has been reported to be inefficient, but here we describe a set of reagents and a method that allows gene targeting at high efficiency in wild-type isolates. It uses a simple polymerase chain reaction (PCR)-based amplification that extends a completely heterologous selectable marker with 50 bp flanks identical to the target site in the genome. Transformants integrate the PCR product through homologous recombination at high frequency (>75%). We illustrate the potential of this method by disrupting genes at high efficiency and by expressing a heterologous protein from a safe chromosomal harbour site. These methods should stimulate and facilitate further analysis of D. hansenii strains and open the way to engineer strains for biotechnology.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"550-564"},"PeriodicalIF":2.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. 热带森林的酵母:生物多样性,生态相互作用,以及作为生物创新的来源。
IF 2.2 4区 生物学
Yeast Pub Date : 2023-11-01 Epub Date: 2023-11-03 DOI: 10.1002/yea.3903
Carlos A Rosa, Marc-André Lachance, Savitree Limtong, Ana R O Santos, Melissa F Landell, Andreas K Gombert, Paula B Morais, José P Sampaio, Carla Gonçalves, Paula Gonçalves, Aristóteles Góes-Neto, Rosângela Santa-Brígida, Marlúcia B Martins, Daniel H Janzen, Winnie Hallwachs
{"title":"Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation.","authors":"Carlos A Rosa, Marc-André Lachance, Savitree Limtong, Ana R O Santos, Melissa F Landell, Andreas K Gombert, Paula B Morais, José P Sampaio, Carla Gonçalves, Paula Gonçalves, Aristóteles Góes-Neto, Rosângela Santa-Brígida, Marlúcia B Martins, Daniel H Janzen, Winnie Hallwachs","doi":"10.1002/yea.3903","DOIUrl":"10.1002/yea.3903","url":null,"abstract":"<p><p>Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"511-539"},"PeriodicalIF":2.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71427440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visioning synthetic futures for yeast research within the context of current global techno-political trends. 在当前全球技术政治趋势的背景下,展望酵母研究的合成未来。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-10-01 Epub Date: 2023-08-31 DOI: 10.1002/yea.3897
Thomas A Dixon, Roy S K Walker, Isak S Pretorius
{"title":"Visioning synthetic futures for yeast research within the context of current global techno-political trends.","authors":"Thomas A Dixon,&nbsp;Roy S K Walker,&nbsp;Isak S Pretorius","doi":"10.1002/yea.3897","DOIUrl":"10.1002/yea.3897","url":null,"abstract":"<p><p>Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"443-456"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequential inoculation of flocculent Torulaspora delbrueckii with Saccharomyces cerevisiae increases color density of Pinot Noir wines. 用酿酒酵母连续接种絮凝的德氏Torulaspora delbrueckii可提高黑比诺葡萄酒的色密度。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-10-01 Epub Date: 2023-08-31 DOI: 10.1002/yea.3896
Katasha S McCullough, Yi Yang, Melodie A Lindsay, Neill Culley, Rebecca C Deed
{"title":"Sequential inoculation of flocculent Torulaspora delbrueckii with Saccharomyces cerevisiae increases color density of Pinot Noir wines.","authors":"Katasha S McCullough,&nbsp;Yi Yang,&nbsp;Melodie A Lindsay,&nbsp;Neill Culley,&nbsp;Rebecca C Deed","doi":"10.1002/yea.3896","DOIUrl":"10.1002/yea.3896","url":null,"abstract":"<p><p>Pinot noir grapes require careful management in the winery to prevent loss of color density and promote aging stability. Winemaking with flocculent yeast has been shown to increase color density, which is desirable to consumers. This research explored interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine color. Sedimentation rates of six non-Saccharomyces species and two Saccharomyces cerevisiae strains were assayed individually and in combination. The most flocculent pairings, Torulaspora delbrueckii BIODIVA with S. cerevisiae RC212 or VL3, were used to ferment 20 L Pinot noir must. Sequential fermentations produced wines with greater color density at 420 + 520 nm, confirmed by sensory panel. Total and monomeric anthocyanin concentrations were decreased in sequentially fermented wines, despite being the main source of red wine color. BIODIVA adsorbed more anthocyanins than S. cerevisiae, indicating a greater number of cell wall mannoproteins in flocculent yeast, that could then result in a later release of anthocyanins and enhance copigment formation in red wines.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"493-505"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10122144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presence of Saccharomyces eubayanus in fermentative environments reveals a new adaptive scenario in Patagonia. 真巴亚努斯酵母在发酵环境中的存在揭示了巴塔哥尼亚的一种新的适应性场景。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-10-01 Epub Date: 2023-08-18 DOI: 10.1002/yea.3894
Melisa Gonzalez-Flores, Ana V Delfino, María E Rodríguez, Christian A Lopes
{"title":"Presence of Saccharomyces eubayanus in fermentative environments reveals a new adaptive scenario in Patagonia.","authors":"Melisa Gonzalez-Flores,&nbsp;Ana V Delfino,&nbsp;María E Rodríguez,&nbsp;Christian A Lopes","doi":"10.1002/yea.3894","DOIUrl":"10.1002/yea.3894","url":null,"abstract":"<p><p>Patagonia (Argentina and Chile) harbors the highest Saccharomyces eubayanus genomic diversity and its widest predominance in natural environments. In this work, S. eubayanus was isolated for the first time from a fermentative environment. This species was found dominating both a traditional apple chicha fermentation as well as feral apple trees in the Andean region of Aluminé (Argentina). S. eubayanus was the only Saccharomyces species found in the isolation substrates, although it coexisted with other non-Saccharomyces species. The absence of strong fermentative competitors of the Saccharomyces genus (like Saccharomyces uvarum or Saccharomyces cerevisiae) in the feral apples could promote the development and implantation of S. eubayanus in a spontaneous apple must fermentation. Phylogeographic analyses revealed a high intraspecific diversity in S. eubayanus, enabling the characterization of strains belonging to the genomic subpopulations PA1, PA2, and PB1 according to the sequences obtained for the intFR gene region. This result evidence that the studied sampling area represents a natural habitat for the species. Being a novel finding, studying the causes that allowed this species to prosper in a fermentative environment becomes essential. Hence, the physiological profile of the new isolates, including their ability to grow at different temperature, nitrogen, and ethanol concentrations was evaluated in comparison with a set of S. eubayanus strains previously isolated from natural environment and representing different genomic subpopulations. Greater physiological diversity was evidenced when strains isolated from both natural and fermentative environments were analyzed overall. Furthermore, no direct relationship between genomic population and physiological behavior was observed; on the opposite, strains appeared to exhibit similar behavior, primarily grouped by isolation origin.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"476-492"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10024148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol. 探索基于酵母的微生物相互作用:采后生物控制的下一个前沿。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-10-01 Epub Date: 2023-08-31 DOI: 10.1002/yea.3895
Bilal Agirman, Erdem Carsanba, Luca Settanni, Huseyin Erten
{"title":"Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol.","authors":"Bilal Agirman,&nbsp;Erdem Carsanba,&nbsp;Luca Settanni,&nbsp;Huseyin Erten","doi":"10.1002/yea.3895","DOIUrl":"10.1002/yea.3895","url":null,"abstract":"<p><p>Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"457-475"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10483824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correction to "Experimental approaches to study evolutionary cell biology using yeasts". 对“利用酵母研究进化细胞生物学的实验方法”的更正。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-09-01 DOI: 10.1002/yea.3889
{"title":"Correction to \"Experimental approaches to study evolutionary cell biology using yeasts\".","authors":"","doi":"10.1002/yea.3889","DOIUrl":"https://doi.org/10.1002/yea.3889","url":null,"abstract":"","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"437"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Yeasts are essential for mucilage degradation of coffee beans during wet fermentation. 酵母是湿发酵过程中咖啡豆粘液降解的关键。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-09-01 Epub Date: 2023-07-19 DOI: 10.1002/yea.3888
Hosam Elhalis, Julian Cox, Jian Zhao
{"title":"Yeasts are essential for mucilage degradation of coffee beans during wet fermentation.","authors":"Hosam Elhalis,&nbsp;Julian Cox,&nbsp;Jian Zhao","doi":"10.1002/yea.3888","DOIUrl":"10.1002/yea.3888","url":null,"abstract":"<p><p>During wet fermentation, mucilage layers in coffee cherries must be removed completely. To explain mucilage degradation, several controversial hypotheses have been proposed. The aim of this work was to improve our understanding of the kinetics of mucilage breakdown. Pulped coffee beans were wet fermented with seven different treatments for 36 h. Endogenous bacteria and yeasts are selectively suppressed, and pectinases or lactic acid are added. They also involve maintaining the beans at pH 7 throughout fermentation and using spontaneous fermentation without additives as a control. During spontaneous fermentation, yeast and lactic acid bacteria were detected and significantly increased to 5.5 log colony-forming units (CFU)/mL and 5.2 log CFU/mL, respectively. In the first 12 h of fermentation, there was a significant degree of endogenous pectinolytic activity, which resulted in partly destroyed beans in the absence of microorganisms. By adding pectinase and lactic acid to the fermentation mass, the breakdown process was accelerated in less than 8 h. When yeast was present throughout the fermentation, complete degradation was achieved. Bacteria played no critical role in the degradation. Klebsiella pneumoniae and Erwinia soli were found in a lower population and showed weaker pectinolytic activities compared to Hanseniaspora uvarum and Pichia kudriavzevii. During wet fermentation, mucilage degradation appears to be mediated by endogenous enzymes at the early stage, whereas microbial contributions, mainly yeasts, occur subsequently. H. uvarum and P. kudriavzevii may be promising candidates to be tested in future studies as coffee starter cultures to better control the mucilage degradation process.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"425-436"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10192435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression level of SOR1 is a bottleneck for efficient sorbitol utilization by yeast Komagataella kurtzmanii. SOR1的表达水平是Komagataella kurtzmanii酵母有效利用山梨醇的瓶颈。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-09-01 Epub Date: 2023-06-05 DOI: 10.1002/yea.3884
Philipp Akentyev, Daria Sokolova, Aleksei Korzhenkov, Irek Gubaidullin, Dmitry Kozlov
{"title":"Expression level of SOR1 is a bottleneck for efficient sorbitol utilization by yeast Komagataella kurtzmanii.","authors":"Philipp Akentyev,&nbsp;Daria Sokolova,&nbsp;Aleksei Korzhenkov,&nbsp;Irek Gubaidullin,&nbsp;Dmitry Kozlov","doi":"10.1002/yea.3884","DOIUrl":"10.1002/yea.3884","url":null,"abstract":"<p><p>The yeast strain Komagataella kurtzmanii VKPM Y-727 shows a significant defect in sorbitol utilization compared to closely related yeast K. phaffii (including strains formerly identified as Pichia pastoris). Our aim was to investigate the factors that determine the phenotype of the wild-type strain and to obtain a K. kurtzmanii strain with an improved ability to utilize sorbitol. We sequenced and annotated the genome of K. kurtzmanii VKPM Y-727 and compared it with that of K. phaffii GS115. Five K. phaffii GS115 genes that might be involved in sorbitol metabolism were selected and transferred into K. kurtzmanii Y-727. The transfer of the modified SOR1 gene resulted in an increased growth rate of K. kurtzmanii in sorbitol, despite the fact that Y-727 already contains its own SOR1 gene without any apparent mutations. The enzymes encoded by the SOR1 genes were analyzed in vitro and found to have similar properties. Differences in promoter activity were assessed using lacZ as a reporter gene, and the P<sub>SDH727</sub>  (promoter of SOR1 (SDH727) from K. kurtzmanii Y-727) promoter was shown to be 1.5-2.0 times weaker than P<sub>SDH115</sub>  (promoter of SOR1 (SDH115) from K. phaffii GS115). Moreover, both promoters were less active in K. kurtzmanii than in K. phaffii when evaluated in cells grown in synthetic complete media with glucose or sorbitol. Thus, SOR1 gene expression was identified as a bottleneck in sorbitol metabolism in K. kurtzmanii. Also, the positive effect of additional modified SOR1 gene copies was observed in both yeasts, as K. kurtzmanii and K. phaffii could grow on synthetic complete media with sorbitol three times faster than the original K. phaffii GS115 strain.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"414-424"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10545104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of anaerobic growth in Saccharomycotina yeasts. 酵母厌氧生长的进化。
IF 2.6 4区 生物学
Yeast Pub Date : 2023-09-01 Epub Date: 2023-08-01 DOI: 10.1002/yea.3890
David J Krause
{"title":"The evolution of anaerobic growth in Saccharomycotina yeasts.","authors":"David J Krause","doi":"10.1002/yea.3890","DOIUrl":"10.1002/yea.3890","url":null,"abstract":"<p><p>Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 9","pages":"395-400"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10546632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信