{"title":"Unilateral ends-out gene targeting increases mistargeting through supporting extensive single-strand assimilation.","authors":"Petar Tomev Mitrikeski","doi":"10.1002/yea.3899","DOIUrl":null,"url":null,"abstract":"<p><p>Ends-out gene targeting enables the swapping of endogenous alleles with exogenous ones through homologous recombination which bears great implications both fundamental and applicable. To address the recombination mechanism(s) behind it, an experimental system was designed to distinguish between a possible (but rarely active) unilateral and the expected bilateral targeting in the yeast Saccharomyces cerevisiae in which the proportions of the two alternative genetic outcomes are conceived to mirror the probabilities of the two scenarios. The quantitative analysis showed that the bilateral targeting was expectedly predominant. However, an analogous comparative analysis on a different experimental set suggested a prevalence of unilateral targeting unveiling an uncertainty whether the extensively resected targeting modules only mimic unilateral invasion. Based on this, a comprehensive qualitative analysis was conducted revealing a single basic ends-out gene targeting mechanism composed of two intertwined pathways differing in the way how the homologous invasion is initiated and/or the production of the intermediates is conducted. This study suggests that bilateral targeting lowers mistargeting plausibly by limiting strand assimilation, unlike unilateral targeting which may initiate extensive strand assimilation producing intermediates capable of supporting multiple genetic outcomes which leads to mistargeting. Some of these outcomes can also be produced by mimicking unilateral invasion.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3899","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ends-out gene targeting enables the swapping of endogenous alleles with exogenous ones through homologous recombination which bears great implications both fundamental and applicable. To address the recombination mechanism(s) behind it, an experimental system was designed to distinguish between a possible (but rarely active) unilateral and the expected bilateral targeting in the yeast Saccharomyces cerevisiae in which the proportions of the two alternative genetic outcomes are conceived to mirror the probabilities of the two scenarios. The quantitative analysis showed that the bilateral targeting was expectedly predominant. However, an analogous comparative analysis on a different experimental set suggested a prevalence of unilateral targeting unveiling an uncertainty whether the extensively resected targeting modules only mimic unilateral invasion. Based on this, a comprehensive qualitative analysis was conducted revealing a single basic ends-out gene targeting mechanism composed of two intertwined pathways differing in the way how the homologous invasion is initiated and/or the production of the intermediates is conducted. This study suggests that bilateral targeting lowers mistargeting plausibly by limiting strand assimilation, unlike unilateral targeting which may initiate extensive strand assimilation producing intermediates capable of supporting multiple genetic outcomes which leads to mistargeting. Some of these outcomes can also be produced by mimicking unilateral invasion.
期刊介绍:
Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology.
Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources