{"title":"Issue Information","authors":"","doi":"10.1002/yea.3757","DOIUrl":"https://doi.org/10.1002/yea.3757","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48255644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anita E Nwaefuna, Teun Boekhout, Mar Garcia-Aloy, Urska Vrhovsek, Nerve Zhou
{"title":"Diversity of dung beetle-associated yeasts from pristine environments of Botswana.","authors":"Anita E Nwaefuna, Teun Boekhout, Mar Garcia-Aloy, Urska Vrhovsek, Nerve Zhou","doi":"10.1002/yea.3852","DOIUrl":"https://doi.org/10.1002/yea.3852","url":null,"abstract":"<p><p>Yeast-insect interactions are increasingly becoming an attractive source of discovery for previously unknown, unique, diverse, and industrially relevant yeast species. Despite a wealth of studies that have recently focused on yeasts in symbiotic association with Hymenopteran insects, yeasts associated with Coleopteran insects, such as lignocellulosic-rich dung-dependent beetles, remain poorly studied. Trends in yeast discovery suggest that species richness and diversity can be attributed to the ecological niche of the insect. Here, we considered the potential of dung beetles inhabiting the extreme environments of Botswana, characterized by desert-like conditions (semi-arid to arid and hot) as well as protected pristine environments, as possible attribute niches that can shape the extremophilic and diverse life history strategies of yeasts. We obtained a total of 97 phylogenetically diverse yeast isolates from six species of dung beetles from Botswana's unexplored environments, representing 19 species belonging to 11 genera. The findings suggest that the guts of dung beetles are a rich niche for non-Saccharomyces yeast species. Meyerozyma and Pichia were the most dominant genera associated with dung beetles, representing 55% (53 out of 97) of the yeast isolates in our study. Trichosporon and Cutaneotrichosporon genera represented 32% (31 out of 97) of the isolates. The remaining isolates belonged to Apiotrichum, Candida, Diutina, Naganishia, Rhodotorula, and Wickerhamiella genera (12 out of 97). We found out that about 62% (60 out of 97) of the isolates were potentially new species because of their low internal transcribed spacer (ITS) sequence similarity when compared to the most recent optimal species delineation threshold. A single isolate was unidentifiable using the ITS sequences. Using an in silico polymerase chain reaction-restriction fragment length polymorphism approach, we revealed that there was genetic diversity within isolates of the same species. Our results contribute to the knowledge and understanding of the diversity of dung beetle-associated yeasts.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9978061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Yeast: A platform for the production of <sub>L</sub> -tyrosine derivatives.","authors":"Xufan Guo, Xinxin Wu, He Ma, Huayi Liu, Yunzi Luo","doi":"10.1002/yea.3850","DOIUrl":"https://doi.org/10.1002/yea.3850","url":null,"abstract":"<p><p><sub>L</sub> -Tyrosine derivatives are widely applied in the pharmaceutical, food, and chemical industries. Their production is mainly confined to chemical synthesis and plant extract. Microorganisms, as cell factories, exhibit promising advantages for valuable chemical production to fulfill the increase in the demand of global markets. Yeast has been used to produce natural products owing to its robustness and genetic maneuverability. Focusing on the progress of yeast cell factories for the production of <sub>L</sub> -tyrosine derivatives, we summarized the emerging metabolic engineering approaches in building <sub>L</sub> -tyrosoine-overproducing yeast and constructing cell factories of three typical chemicals and their derivatives: tyrosol, p-coumaric acid, and <sub>L</sub> -DOPA. Finally, the challenges and opportunities of <sub>L</sub> -tyrosine derivatives production in yeast cell factories were also discussed.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9659575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brooke A Dilmetz, Christopher T Desire, Leigh Donnellan, Jon Meneses, Manuela Klingler-Hoffmann, Clifford Young, Peter Hoffmann
{"title":"Assessment of yeast physiology during industrial-scale brewing practices using the redox-sensitive dye resazurin.","authors":"Brooke A Dilmetz, Christopher T Desire, Leigh Donnellan, Jon Meneses, Manuela Klingler-Hoffmann, Clifford Young, Peter Hoffmann","doi":"10.1002/yea.3851","DOIUrl":"https://doi.org/10.1002/yea.3851","url":null,"abstract":"<p><p>Beer refermentation in bottles is an industrial process utilized by breweries where yeast and fermentable extract are added to green beer. The beer is refermented for a minimum of 2 weeks before distribution, with the physiological state of the yeast a critical factor for successful refermentation. Ideally, fresh yeast that is propagated from a dedicated propagation plant should be used for refermentation in bottles. Here, we explored the applicability of the fluorescent and redox-sensitive dye, resazurin, to assess cellular metabolism in yeast and its ability to differentiate between growth stages. We applied this assay, with other markers of yeast physiology, to evaluate yeast quality during a full-scale industrial propagation. Resazurin allowed the discrimination between the different growth phases in yeast and afforded a more in-depth understanding of yeast metabolism during propagation. This assay can be used to optimize the yeast propagation process and cropping time to improve beer quality.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9659125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Micaela Parra, Diego Libkind, Chris Todd Hittinger, Lucía Álvarez, Nicolás Bellora
{"title":"Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation.","authors":"Micaela Parra, Diego Libkind, Chris Todd Hittinger, Lucía Álvarez, Nicolás Bellora","doi":"10.1002/yea.3853","DOIUrl":"https://doi.org/10.1002/yea.3853","url":null,"abstract":"Aureobasidium pullulans is a yeast‐like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re‐evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high‐depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9659613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luís Ferraz, Karola Vorauer-Uhl, Michael Sauer, Maria J Sousa, Paola Branduardi
{"title":"Impact of ergosterol content on acetic and lactic acids toxicity to Saccharomyces cerevisiae.","authors":"Luís Ferraz, Karola Vorauer-Uhl, Michael Sauer, Maria J Sousa, Paola Branduardi","doi":"10.1002/yea.3828","DOIUrl":"https://doi.org/10.1002/yea.3828","url":null,"abstract":"<p><p>Organic acid stress often represents a major hurdle in industrial bio-based microbial processes. Organic acids can be released from lignocellulosic feedstocks pretreatment and can also be desirable products obtained by microbial fermentation with applications in different industrial sectors. Yeasts are prominent cell factories. However, the presence of organic acids can compromise yeast metabolism, impairing fermentation performances and limiting the economic feasibility of the processes. Plasma membrane remodeling is deeply involved in yeast tolerance to organic acids, but the detailed mechanisms and potentials of this phenomenon remain largely to be studied and exploited. We investigated the impact of ergosterol on Saccharomyces cerevisiae tolerance against organic acid stress by coupling in vitro and in vivo assays. In the in vitro assay, synthetic lipid vesicles were prepared containing different concentrations of ergosterol. We observed changes in organic acids diffusion through the membrane as a function of ergosterol content. Then, we extended our approach in vivo, engineering S. cerevisiae with the aim of changing the ergosterol content of cells. We focused on ECM22, an important transcription factor, involved in the regulation of ergosterol biosynthesis. The overexpression of ECM22 was sufficient to increase ergosterol levels in S. cerevisiae, resulting in an enhanced tolerance toward lactic acid stress. In this work we propose an in vitro approach, using synthetic lipid vesicles, as a complementary method to be used when studying the impact of the plasma membrane lipid composition on the diffusion of organic acids.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9375296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental approaches to study evolutionary cell biology using yeasts.","authors":"Mariana Natalino, Marco Fumasoni","doi":"10.1002/yea.3848","DOIUrl":"https://doi.org/10.1002/yea.3848","url":null,"abstract":"<p><p>The past century has witnessed tremendous advances in understanding how cells function. Nevertheless, how cellular processes have evolved is still poorly understood. Many studies have highlighted surprising molecular diversity in how cells from diverse species execute the same processes, and advances in comparative genomics are likely to reveal much more molecular diversity than was believed possible until recently. Extant cells remain therefore the product of an evolutionary history that we vastly ignore. Evolutionary cell biology has emerged as a discipline aiming to address this knowledge gap by combining evolutionary, molecular, and cellular biology thinking. Recent studies have shown how even essential molecular processes, such as DNA replication, can undergo fast adaptive evolution under certain laboratory conditions. These developments open new lines of research where the evolution of cellular processes can be investigated experimentally. Yeasts naturally find themselves at the forefront of this research line. Not only do they allow the observation of fast evolutionary adaptation, but they also provide numerous genomic, synthetic, and cellular biology tools already developed by a large community. Here we propose that yeasts can serve as an \"evolutionary cell lab\" to test hypotheses, principles, and ideas in evolutionary cell biology. We discuss various experimental approaches available for this purpose, and how biology at large can benefit from them.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10375262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Koichi Tanabe, Natshumi Maeda, Honoka Okumura, Jun Shima
{"title":"Emergence of [GAR<sup>+</sup> ] cells in yeast from sake brewing affects the fermentation properties.","authors":"Koichi Tanabe, Natshumi Maeda, Honoka Okumura, Jun Shima","doi":"10.1002/yea.3844","DOIUrl":"https://doi.org/10.1002/yea.3844","url":null,"abstract":"<p><p>In the traditional (kimoto) method of sake (Japanese rice wine) brewing, Saccharomyces cerevisiae yeast cells are exposed to lactate, which is produced by lactic acid bacteria in the seed mash. Lactate promotes the appearance of glucose-repression-resistant [GAR<sup>+</sup> ] cells. Herein, we compared the resistance to glucose repression among kimoto, industrial, and laboratory yeast strains. We observed that the frequencies of the spontaneous emergence of [GAR<sup>+</sup> ] cells among the kimoto strains were higher than those among the industrial and laboratory strains. The fermentation ability of a kimoto yeast (strain U44) was lower than that of an industrial strain (K701), as [GAR<sup>+</sup> ] cells generally showed slower ethanol production. The addition of lactate decreased the fermentation abilities of the K701 strain by increasing the number of [GAR<sup>+</sup> ] cells, but it did not affect those of the U44 strain. These results suggest that lactate controlled fermentation by promoting the appearance of [GAR<sup>+</sup> ] cells in the industrial sake strains but not in the kimoto strains.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9314142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights from yeast: Transcriptional reprogramming following metformin treatment is similar to that of deferiprone in a yeast Friedreich's ataxia model.","authors":"Esra Börklü","doi":"10.1002/yea.3845","DOIUrl":"https://doi.org/10.1002/yea.3845","url":null,"abstract":"<p><p>In the absence of YFH1, the yeast ortholog of the human FXN gene, budding yeast Saccharomyces cerevisiae experience similar problems to those of cells with Friedreich's ataxia (FRDA). The comparable phenotypic traits consist of impaired respiration, problems in iron homeostasis, decreased oxidative stress tolerance, and diminished iron-sulfur cluster synthesis, rendering yeast of potential use in FRDA modeling and drug trials. Deferiprone, an iron chelator, is one of the long-term studied potential drugs for FRDA, whereas metformin is a biguanide prescribed to treat type 2 diabetes. In the present study, the effects of deferiprone and metformin treatment on the yeast FRDA model are explored via RNA-sequencing analyses. The comparative inquiry of transcriptome data reveals new promising roles for metformin in FRDA treatment since deferiprone and metformin treatments produce overlapping transcriptional and phenotypic responses in YFH1Δ cells. The results revealed that both deferiprone and metformin treatment does not rescue aerobic respiration in YFH1Δ cells, but they alleviate the FRDA phenotype probably by triggering the retrograde mitochondria-to-nucleus signaling.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ger1 is a secreted aspartic acid protease essential for spore germination in Ustilago maydis.","authors":"Subhasish Mukherjee, Koustav Bhakta, Abhrajyoti Ghosh, Anupama Ghosh","doi":"10.1002/yea.3835","DOIUrl":"https://doi.org/10.1002/yea.3835","url":null,"abstract":"<p><p>Ustilago maydis expresses a number of proteases during its pathogenic lifecycle. Some of the proteases including both intracellular and extracellular ones have previously been shown to influence the virulence of the pathogen. However, any role of secreted proteases in the sporulation process of U. maydis have not been explored earlier. In this study we have investigated the biological function of one such secreted protease, Ger1 belonging to aspartic protease A1 family. An assessment of the real time expression of ger1 revealed an infection specific expression of the protein especially during late phases of infection. We also evaluated any contribution of the protein in the pathogenicity of the fungus. Our data revealed an involvement of Ger1 in the sporulation and spore germination processes of U. maydis. Ger1 also showed positive influence on the pathogenicity of the fungus and accordingly the ger1 deletion mutant exhibited reduced pathogenicity. The study also demonstrated the protease activity associated with Ger1 to be essential for its biological function. Fluorescence microscopy of maize plants infected with U. maydis cells expressing Ger1-mcherry-HA also revealed that Ger1 is efficiently secreted within maize apoplast.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9432669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}