{"title":"Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol.","authors":"Bilal Agirman, Erdem Carsanba, Luca Settanni, Huseyin Erten","doi":"10.1002/yea.3895","DOIUrl":"10.1002/yea.3895","url":null,"abstract":"<p><p>Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10483824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to \"Experimental approaches to study evolutionary cell biology using yeasts\".","authors":"","doi":"10.1002/yea.3889","DOIUrl":"https://doi.org/10.1002/yea.3889","url":null,"abstract":"","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
YeastPub Date : 2023-09-01Epub Date: 2023-07-19DOI: 10.1002/yea.3888
Hosam Elhalis, Julian Cox, Jian Zhao
{"title":"Yeasts are essential for mucilage degradation of coffee beans during wet fermentation.","authors":"Hosam Elhalis, Julian Cox, Jian Zhao","doi":"10.1002/yea.3888","DOIUrl":"10.1002/yea.3888","url":null,"abstract":"<p><p>During wet fermentation, mucilage layers in coffee cherries must be removed completely. To explain mucilage degradation, several controversial hypotheses have been proposed. The aim of this work was to improve our understanding of the kinetics of mucilage breakdown. Pulped coffee beans were wet fermented with seven different treatments for 36 h. Endogenous bacteria and yeasts are selectively suppressed, and pectinases or lactic acid are added. They also involve maintaining the beans at pH 7 throughout fermentation and using spontaneous fermentation without additives as a control. During spontaneous fermentation, yeast and lactic acid bacteria were detected and significantly increased to 5.5 log colony-forming units (CFU)/mL and 5.2 log CFU/mL, respectively. In the first 12 h of fermentation, there was a significant degree of endogenous pectinolytic activity, which resulted in partly destroyed beans in the absence of microorganisms. By adding pectinase and lactic acid to the fermentation mass, the breakdown process was accelerated in less than 8 h. When yeast was present throughout the fermentation, complete degradation was achieved. Bacteria played no critical role in the degradation. Klebsiella pneumoniae and Erwinia soli were found in a lower population and showed weaker pectinolytic activities compared to Hanseniaspora uvarum and Pichia kudriavzevii. During wet fermentation, mucilage degradation appears to be mediated by endogenous enzymes at the early stage, whereas microbial contributions, mainly yeasts, occur subsequently. H. uvarum and P. kudriavzevii may be promising candidates to be tested in future studies as coffee starter cultures to better control the mucilage degradation process.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10192435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
YeastPub Date : 2023-09-01Epub Date: 2023-06-05DOI: 10.1002/yea.3884
Philipp Akentyev, Daria Sokolova, Aleksei Korzhenkov, Irek Gubaidullin, Dmitry Kozlov
{"title":"Expression level of SOR1 is a bottleneck for efficient sorbitol utilization by yeast Komagataella kurtzmanii.","authors":"Philipp Akentyev, Daria Sokolova, Aleksei Korzhenkov, Irek Gubaidullin, Dmitry Kozlov","doi":"10.1002/yea.3884","DOIUrl":"10.1002/yea.3884","url":null,"abstract":"<p><p>The yeast strain Komagataella kurtzmanii VKPM Y-727 shows a significant defect in sorbitol utilization compared to closely related yeast K. phaffii (including strains formerly identified as Pichia pastoris). Our aim was to investigate the factors that determine the phenotype of the wild-type strain and to obtain a K. kurtzmanii strain with an improved ability to utilize sorbitol. We sequenced and annotated the genome of K. kurtzmanii VKPM Y-727 and compared it with that of K. phaffii GS115. Five K. phaffii GS115 genes that might be involved in sorbitol metabolism were selected and transferred into K. kurtzmanii Y-727. The transfer of the modified SOR1 gene resulted in an increased growth rate of K. kurtzmanii in sorbitol, despite the fact that Y-727 already contains its own SOR1 gene without any apparent mutations. The enzymes encoded by the SOR1 genes were analyzed in vitro and found to have similar properties. Differences in promoter activity were assessed using lacZ as a reporter gene, and the P<sub>SDH727</sub> (promoter of SOR1 (SDH727) from K. kurtzmanii Y-727) promoter was shown to be 1.5-2.0 times weaker than P<sub>SDH115</sub> (promoter of SOR1 (SDH115) from K. phaffii GS115). Moreover, both promoters were less active in K. kurtzmanii than in K. phaffii when evaluated in cells grown in synthetic complete media with glucose or sorbitol. Thus, SOR1 gene expression was identified as a bottleneck in sorbitol metabolism in K. kurtzmanii. Also, the positive effect of additional modified SOR1 gene copies was observed in both yeasts, as K. kurtzmanii and K. phaffii could grow on synthetic complete media with sorbitol three times faster than the original K. phaffii GS115 strain.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10545104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
YeastPub Date : 2023-09-01Epub Date: 2023-08-01DOI: 10.1002/yea.3890
David J Krause
{"title":"The evolution of anaerobic growth in Saccharomycotina yeasts.","authors":"David J Krause","doi":"10.1002/yea.3890","DOIUrl":"10.1002/yea.3890","url":null,"abstract":"<p><p>Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10546632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intracellular presence and genetic relationship of Helicobacter pylori within neonates' fecal yeasts and their mothers' vaginal yeasts.","authors":"Tingxiu Yang, Yuanyuan Zhang, Hua Zhang, Xiaojuan Wu, Jianchao Sun, Dengxiong Hua, Ke Pan, Qi Liu, Guzhen Cui, Zhenghong Chen","doi":"10.1002/yea.3891","DOIUrl":"10.1002/yea.3891","url":null,"abstract":"<p><p>Helicobacter pylori are transmissible from person to person and among family members. Mother-to-child transmission is the main intrafamilial route of H. pylori transmission. However, how it transmits from mother to child is still being determined. Vaginal yeast often transmits to neonates during delivery. Therefore, H. pylori hosted in yeast might follow the same transmission route. This study aimed to detect intracellular H. pylori in vaginal and fecal yeasts isolates and explore the role of yeast in H. pylori transmission. Yeast was isolated from the mothers' vaginal discharge and neonates' feces and identified by internal transcribed spacer (ITS) sequencing. H. pylori 16S rRNA and antigen were detected in yeast isolates by polymerase chain reaction and direct immunofluorescence assay. Genetic relationships of Candida strains isolated from seven mothers and their corresponding neonates were determined by random amplified polymorphic DNA (RAPD) fingerprinting and ITS alignment. The Candida isolates from four mother-neonate pairs had identical RAPD patterns and highly homologous ITS sequences. The current study showed H. pylori could be sheltered within yeast colonizing the vagina, and fecal yeast from neonates is genetically related to the vaginal yeast from their mothers. Thus, vaginal yeast presents a potential reservoir of H. pylori and plays a vital role in the transmission from mother to neonate.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10250580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasiya Z Zazulya, Marta V Semkiv, Maxim Stec, Zuzanna Cyske, Lidia Gaffke, Karolina Pierzynowska, Grzegorz Węgrzyn, Andriy A Sibirny
{"title":"The Komagatella phaffii ACG1 gene, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in the autophagy of cytosolic and peroxisomal proteins.","authors":"Anastasiya Z Zazulya, Marta V Semkiv, Maxim Stec, Zuzanna Cyske, Lidia Gaffke, Karolina Pierzynowska, Grzegorz Węgrzyn, Andriy A Sibirny","doi":"10.1002/yea.3846","DOIUrl":"https://doi.org/10.1002/yea.3846","url":null,"abstract":"<p><p>The methylotrophic yeast Komagataella phaffii is considered one of the most effective producers of recombinant proteins of industrial importance. Effective producers should be characterized by the maximal reduction of degradation of the cytosolic recombinant proteins. The mechanisms of degradation of cytosolic proteins in K. phaffii have not been elucidated; however, data suggest that they are partially degraded in the autophagic pathway. To identify factors that influence this process, a developed system for the selection of recombinant strains of K. phaffii with impaired autophagic degradation of the heterologous model cytosolic protein (yeast β-galactosidase) was used for insertional tagging of the genes involved in cytosolic proteins degradation. In one of the obtained strains, the insertion cassette disrupted the open reading frame of the gene encoding β-1,6-N-acetylglucosaminyltransferase. A recombinant strain with deletion of this gene was also obtained. The rate of degradation of the β-galactosidase enzyme was two times slower in the insertion mutant and 1.5 times slower in the deletion strain as compared to the parental strain with native β-1,6-N-acetylglucosaminyltransferase. The rate of degradation of native K. phaffii cytosolic and peroxisomal enzymes, formaldehyde dehydrogenase, formate dehydrogenase, and alcohol oxidase, respectively, showed similar trends to that of β-galactosidase-slower degradation in the deletion and insertional mutants as compared to the wild-type strain, but faster protein degradation relative to the strain completely defective in autophagy. We conclude that K. phaffii gene designated ACG1, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in autophagy of the cytosolic and peroxisomal proteins.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
YeastPub Date : 2023-08-01Epub Date: 2023-04-10DOI: 10.1002/yea.3849
Jennifer J Tate, Rajendra Rai, Terrance G Cooper
{"title":"TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression.","authors":"Jennifer J Tate, Rajendra Rai, Terrance G Cooper","doi":"10.1002/yea.3849","DOIUrl":"10.1002/yea.3849","url":null,"abstract":"<p><p>Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Rapala-Kozik, Magdalena Surowiec, Magdalena Juszczak, Ewelina Wronowska, Kamila Kulig, Aneta Bednarek, Miriam Gonzalez-Gonzalez, Justyna Karkowska-Kuleta, Marcin Zawrotniak, Dorota Satała, Andrzej Kozik
{"title":"Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity.","authors":"Maria Rapala-Kozik, Magdalena Surowiec, Magdalena Juszczak, Ewelina Wronowska, Kamila Kulig, Aneta Bednarek, Miriam Gonzalez-Gonzalez, Justyna Karkowska-Kuleta, Marcin Zawrotniak, Dorota Satała, Andrzej Kozik","doi":"10.1002/yea.3855","DOIUrl":"https://doi.org/10.1002/yea.3855","url":null,"abstract":"<p><p>The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10334344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dorota Satala, Justyna Karkowska-Kuleta, Grazyna Bras, Maria Rapala-Kozik, Andrzej Kozik
{"title":"Candida parapsilosis cell wall proteins-CPAR2_404800 and CPAR2_404780-Are adhesins that bind to human epithelial and endothelial cells and extracellular matrix proteins.","authors":"Dorota Satala, Justyna Karkowska-Kuleta, Grazyna Bras, Maria Rapala-Kozik, Andrzej Kozik","doi":"10.1002/yea.3847","DOIUrl":"https://doi.org/10.1002/yea.3847","url":null,"abstract":"One of the initial steps necessary for the development of Candida infections is the adherence to the host tissues and cells. Recent transcriptomic studies suggest that, in Candida parapsilosis—a fungal infectious agent that causes systemic candidiasis in immunosuppressed individuals—the adhesion is mediated by pathogen cell‐exposed proteins belonging to the agglutinin‐like sequence (Als) family. However, to date, the actual interactions of individual members of this family with human cells and extracellular matrix (ECM) have not been characterized in detail. In the current study, we focused attention on two of these C. parapsilosis Als proteins—CPAR2_404800 and CPAR2_404780—that were proteomically identified in the fungal cell wall of yeasts grown in the media suitable for culturing human epithelial and endothelial cells. Both proteins were extracted from the cell wall and purified, and using a microplate binding assay and a fluorescence microscopic analysis were shown to adhere to human cells of A431 (epithelial) and HMEC‐1 (endothelial) lines. The human extracellular matrix components that are also plasma proteins—fibronectin and vitronectin—enhanced these interactions, and also could directly bind to CPAR2_404800 and CPAR2_404780 proteins, with a high affinity (KD in a range of 10−7 to 10−8 M) as determined by surface plasmon resonance measurements. Our findings highlight the role of proteins CPAR2_404800 and CPAR2_404780 in adhesion to host cells and proteins, contributing to the knowledge of the mechanisms of host‐pathogen interactions during C. parapsilosis‐caused infections.","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10333879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}