MKT1 alleles regulate stress responses through posttranscriptional modulation of Puf3 targets in budding yeast.

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2023-12-01 Epub Date: 2023-11-22 DOI:10.1002/yea.3908
Koppisetty Viswa Chaithanya, Himanshu Sinha
{"title":"MKT1 alleles regulate stress responses through posttranscriptional modulation of Puf3 targets in budding yeast.","authors":"Koppisetty Viswa Chaithanya, Himanshu Sinha","doi":"10.1002/yea.3908","DOIUrl":null,"url":null,"abstract":"<p><p>MKT1 is a pleiotropic stress response gene identified by several quantitative trait studies with MKT1<sup>89G</sup> as a causal variant, contributing to growth advantage in multiple stress environments. MKT1 has been shown to regulate HO endonuclease posttranscriptionally via the Pbp1-Pab1 complex. RNA-binding protein Puf3 modulates a set of nuclear-encoded mitochondrial transcripts whose expression was found to be affected by MKT1 alleles. This study attempts to relate the MKT1 allele-derived growth advantage with the stability of Puf3 targets during stress and elucidate the roles of Pbp1 and Puf3 in this mechanism. Our results showed that the growth advantage of the MKT1<sup>89G</sup> allele in cycloheximide and H<sub>2</sub> O<sub>2</sub> was PBP1-dependent, whereas in 4-nitroquinoline 1-oxide, the growth advantage was dependent on both PUF3 and PBP1. We compared the messenger RNA decay kinetics of a set of Puf3 targets in multiple stress environments to understand the allele-specific regulation by MKT1. In oxidative stress, the MKT1<sup>89G</sup> allele modulated the differential expression of nuclear-encoded mitochondrial genes in a PBP1- and PUF3-dependent manner. Additionally, MKT1<sup>89G</sup> stabilised Puf3 targets, namely, COX17, MRS1 and RDL2, in an allele and stress-specific manner. Our results showed that COX17, MRS1 and RDL2 had a stress-specific response in stress environments, with the MKT1<sup>89G</sup> allele contributing to better growth; this response was both PBP1- and PUF3-dependent. Our results indicate that the common allele, MKT1<sup>89G</sup> , regulates stress responses by differentially stabilising Puf3-target mitochondrial genes, which allows for the strain's better growth in stress environments.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3908","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MKT1 is a pleiotropic stress response gene identified by several quantitative trait studies with MKT189G as a causal variant, contributing to growth advantage in multiple stress environments. MKT1 has been shown to regulate HO endonuclease posttranscriptionally via the Pbp1-Pab1 complex. RNA-binding protein Puf3 modulates a set of nuclear-encoded mitochondrial transcripts whose expression was found to be affected by MKT1 alleles. This study attempts to relate the MKT1 allele-derived growth advantage with the stability of Puf3 targets during stress and elucidate the roles of Pbp1 and Puf3 in this mechanism. Our results showed that the growth advantage of the MKT189G allele in cycloheximide and H2 O2 was PBP1-dependent, whereas in 4-nitroquinoline 1-oxide, the growth advantage was dependent on both PUF3 and PBP1. We compared the messenger RNA decay kinetics of a set of Puf3 targets in multiple stress environments to understand the allele-specific regulation by MKT1. In oxidative stress, the MKT189G allele modulated the differential expression of nuclear-encoded mitochondrial genes in a PBP1- and PUF3-dependent manner. Additionally, MKT189G stabilised Puf3 targets, namely, COX17, MRS1 and RDL2, in an allele and stress-specific manner. Our results showed that COX17, MRS1 and RDL2 had a stress-specific response in stress environments, with the MKT189G allele contributing to better growth; this response was both PBP1- and PUF3-dependent. Our results indicate that the common allele, MKT189G , regulates stress responses by differentially stabilising Puf3-target mitochondrial genes, which allows for the strain's better growth in stress environments.

Abstract Image

MKT1等位基因通过芽殖酵母Puf3靶点的转录后调控胁迫反应。
MKT1是一个多效性的胁迫应答基因,在多个数量性状研究中被发现,MKT189G是一个因果变异,在多种胁迫环境下具有生长优势。MKT1已被证明通过Pbp1-Pab1复合物转录后调节HO内切酶。rna结合蛋白Puf3调节一组核编码的线粒体转录本,其表达被发现受MKT1等位基因的影响。本研究试图将MKT1等位基因衍生的生长优势与逆境中Puf3靶点的稳定性联系起来,并阐明Pbp1和Puf3在这一机制中的作用。结果表明,MKT189G等位基因在环己亚胺和H2 O2中的生长优势依赖于PBP1,而在4-硝基喹啉1-氧化物中的生长优势同时依赖于PUF3和PBP1。我们比较了一组Puf3靶点在多种应激环境下的信使RNA衰变动力学,以了解MKT1对等位基因的特异性调控。在氧化应激中,MKT189G等位基因以PBP1-和puf3依赖的方式调节核编码线粒体基因的差异表达。此外,MKT189G以等位基因和应激特异性的方式稳定Puf3靶点,即COX17、MRS1和rdr2。结果表明,COX17、MRS1和rdr2在逆境环境中具有特异性的应激反应,其中MKT189G等位基因有助于更好的生长;这种反应同时依赖于PBP1和puf3。我们的研究结果表明,共同等位基因MKT189G通过差异稳定puf3靶线粒体基因来调节应激反应,从而使菌株在应激环境中更好地生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信