World journal of stem cells最新文献

筛选
英文 中文
High glucose microenvironment and human mesenchymal stem cell behavior 高糖微环境与人类间充质干细胞的行为
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-03-26 DOI: 10.4252/wjsc.v16.i3.237
Muhammad Abdul Mateen, Nouralsalhin Alaagib, K. Haider
{"title":"High glucose microenvironment and human mesenchymal stem cell behavior","authors":"Muhammad Abdul Mateen, Nouralsalhin Alaagib, K. Haider","doi":"10.4252/wjsc.v16.i3.237","DOIUrl":"https://doi.org/10.4252/wjsc.v16.i3.237","url":null,"abstract":"High glucose (HG) culture conditions in vitro and persistent exposure to hyperglycemia in diabetes patients are detrimental to stem cells, analogous to any other cell type in our body. It interferes with diverse signaling pathways, i.e. mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-Akt signaling, to impact physiological cellular functions, leading to low cell survival and higher cell apoptosis rates. While elucidating the underlying mechanism responsible for the apoptosis of adipose tissue-derived mesenchymal stem cells (MSCs), a recent study has shown that HG culture conditions dysregulate mTOR-PI3K-Akt signaling in addition to mitochondrial malfunctioning due to defective mitochondrial membrane potential (MtMP) that lowers ATP production. This organelle-level dysfunction energy-starves the cells and increases oxidative stress and ultrastructural abnormalities. Disruption of the mitochondrial electron transport chain produces an altered mitochondrial NAD+/NADH redox state as evidenced by a low NAD+/NADH ratio that primarily contributes to the reduced cell survival in HG. Some previous studies have also reported altered mitochondrial membrane polarity (causing hyperpolarization) and reduced mitochondrial cell mass, leading to perturbed mitochondrial homeostasis. The hostile microenvironment created by HG exposure creates structural and functional changes in the mitochondria, altering their bioenergetics and reducing their capacity to produce ATP. These are significant data, as MSCs are extensively studied for tissue regeneration and restoring their normal functioning in cell-based therapy. Therefore, MSCs from hyperglycemic donors should be cautiously used in clinical settings for cell-based therapy due to concerns of their poor survival rates and increased rates of post engraftment proliferation. As hyperglycemia alters the bioenergetics of donor MSCs, rectifying the loss of MtMP may be an excellent target for future research to restore the normal functioning of MSCs in hyperglycemic patients.","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-linked β-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells O 链接β-N-乙酰葡糖胺化可能是促进骨髓间充质基质细胞成骨分化的关键调节因子
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-03-26 DOI: 10.4252/wjsc.v16.i3.228
Xu-Chang Zhou, Guo-Xin Ni
{"title":"O-linked β-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells","authors":"Xu-Chang Zhou, Guo-Xin Ni","doi":"10.4252/wjsc.v16.i3.228","DOIUrl":"https://doi.org/10.4252/wjsc.v16.i3.228","url":null,"abstract":"Cumulative evidence suggests that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) plays an important regulatory role in pathophysiological processes. Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated, the potential mechanisms of O-GlcNAcylation in bone metabolism, particularly, in the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) remains unexplored. In this study, the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed, assuming that it could trigger more scholars to focus on research related to O-GlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis.","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the differentiation of pluripotent stem cells into vascular cells. 将多能干细胞分化为血管细胞的进展。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.137
Yi-Chang Jiao, Ying-Xin Wang, Wen-Zhu Liu, Jing-Wen Xu, Yu-Ying Zhao, Chuan-Zhu Yan, Fu-Chen Liu
{"title":"Advances in the differentiation of pluripotent stem cells into vascular cells.","authors":"Yi-Chang Jiao, Ying-Xin Wang, Wen-Zhu Liu, Jing-Wen Xu, Yu-Ying Zhao, Chuan-Zhu Yan, Fu-Chen Liu","doi":"10.4252/wjsc.v16.i2.137","DOIUrl":"10.4252/wjsc.v16.i2.137","url":null,"abstract":"<p><p>Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable <i>in vitro</i> resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the <i>in vivo</i> transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular preconditioning and mesenchymal stem cell ferroptosis. 细胞预处理和间充质干细胞铁突变。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.64
Doaa Hussein Zineldeen, Mazhar Mushtaq, Khawaja Husnain Haider
{"title":"Cellular preconditioning and mesenchymal stem cell ferroptosis.","authors":"Doaa Hussein Zineldeen, Mazhar Mushtaq, Khawaja Husnain Haider","doi":"10.4252/wjsc.v16.i2.64","DOIUrl":"10.4252/wjsc.v16.i2.64","url":null,"abstract":"<p><p>In this editorial, we comment on the article published in the recent issue of the <i>World Journal of Stem Cells</i>. They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionine γ-lyase/hydrogen sulfide (H<sub>2</sub>S) pathway as a novel approach to treat vascular disorders, particularly pulmonary hypertension. Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh, unfavorable microenvironment of the injured tissue. They also secrete various paracrine factors against apoptosis, necrosis, and ferroptosis to enhance cell survival. Ferroptosis, a regulated form of cell death characterized by iron accumulation and oxidative stress, has been implicated in various pathologies encompassing degenerative disorders to cancer. The lipid peroxidation cascade initiates and sustains ferroptosis, generating many reactive oxygen species that attack and damage multiple cellular structures. Understanding these intertwined mechanisms provides significant insights into developing therapeutic modalities for ferroptosis-related diseases. This editorial primarily discusses stem cell preconditioning in modulating ferroptosis, focusing on the cystathionase gamma/H<sub>2</sub>S ferroptosis pathway. Ferroptosis presents a significant challenge in mesenchymal stem cell (MSC)-based therapies; hence, the emerging role of H<sub>2</sub>S/cystathionase gamma/H<sub>2</sub>S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention. Further research into understanding the precise mechanisms of H<sub>2</sub>S-mediated cytoprotection against ferroptosis is warranted to enhance the therapeutic potential of MSCs in clinical settings, particularly vascular disorders.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VX-509 attenuates the stemness characteristics of colorectal cancer stem-like cells by regulating the epithelial-mesenchymal transition through Nodal/Smad2/3 signaling. VX-509通过Nodal/Smad2/3信号调节上皮-间质转化,从而减轻结直肠癌干样细胞的干性特征。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.207
Yun Yuan, Xu-Fan Zhang, Yu-Chen Li, Hong-Qing Chen, Tian Wen, Jia-Lian Zheng, Zi-Yi Zhao, Qiong-Ying Hu
{"title":"VX-509 attenuates the stemness characteristics of colorectal cancer stem-like cells by regulating the epithelial-mesenchymal transition through Nodal/Smad2/3 signaling.","authors":"Yun Yuan, Xu-Fan Zhang, Yu-Chen Li, Hong-Qing Chen, Tian Wen, Jia-Lian Zheng, Zi-Yi Zhao, Qiong-Ying Hu","doi":"10.4252/wjsc.v16.i2.207","DOIUrl":"10.4252/wjsc.v16.i2.207","url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer stem cells (CCSCs) are heterogeneous cells that can self-renew and undergo multidirectional differentiation in colorectal cancer (CRC) patients. CCSCs are generally accepted to be important sources of CRC and are responsible for the progression, metastasis, and therapeutic resistance of CRC. Therefore, targeting this specific subpopulation has been recognized as a promising strategy for overcoming CRC.</p><p><strong>Aim: </strong>To investigate the effect of VX-509 on CCSCs and elucidate the underlying mechanism.</p><p><strong>Methods: </strong>CCSCs were enriched from CRC cell lines by in conditioned serum-free medium. Western blot, Aldefluor, transwell and tumorigenesis assays were performed to verify the phenotypic characteristics of the CCSCs. The anticancer efficacy of VX-509 was assessed in HCT116 CCSCs and HT29 CCSCs by performing cell viability analysis, colony formation, sphere formation, flow cytometry, and western blotting assessments <i>in vitro</i> and tumor growth, immunohistochemistry and immunofluorescence assessments <i>in vivo</i>.</p><p><strong>Results: </strong>Compared with parental cells, sphere cells derived from HCT116 and HT29 cells presented increased expression of stem cell transcription factors and stem cell markers and were more potent at promoting migration and tumorigenesis, demonstrating that the CRC sphere cells displayed CSC features. VX-509 inhibited the tumor malignant biological behavior of CRC-stem-like cells, as indicated by their proliferation, migration and clonality <i>in vitro</i>, and suppressed the tumor of CCSC-derived xenograft tumors <i>in vivo</i>. Besides, VX-509 suppressed the CSC characteristics of CRC-stem-like cells and inhibited the progression of epithelial-mesenchymal transition (EMT) signaling <i>in vitro</i>. Nodal was identified as the regulatory factor of VX-509 on CRC stem-like cells through analyses of differentially expressed genes and CSC-related database information. VX-509 markedly downregulated the expression of Nodal and its downstream phosphorylated Smad2/3 to inhibit EMT progression. Moreover, VX-509 reversed the dedifferentiation of CCSCs and inhibited the progression of EMT induced by Nodal overexpression.</p><p><strong>Conclusion: </strong>VX-509 prevents the EMT process in CCSCs by inhibiting the transcription and protein expression of Nodal, and inhibits the dedifferentiated self-renewal of CCSCs.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells. 利用鹿茸干细胞细胞外基质高质量修复大鼠骨软骨缺损。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.176
Yu-Su Wang, Wen-Hui Chu, Jing-Jie Zhai, Wen-Ying Wang, Zhong-Mei He, Quan-Min Zhao, Chun-Yi Li
{"title":"High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells.","authors":"Yu-Su Wang, Wen-Hui Chu, Jing-Jie Zhai, Wen-Ying Wang, Zhong-Mei He, Quan-Min Zhao, Chun-Yi Li","doi":"10.4252/wjsc.v16.i2.176","DOIUrl":"10.4252/wjsc.v16.i2.176","url":null,"abstract":"<p><strong>Background: </strong>Cartilage defects are some of the most common causes of arthritis. Cartilage lesions caused by inflammation, trauma or degenerative disease normally result in osteochondral defects. Previous studies have shown that decellularized extracellular matrix (ECM) derived from autologous, allogenic, or xenogeneic mesenchymal stromal cells (MSCs) can effectively restore osteochondral integrity.</p><p><strong>Aim: </strong>To determine whether the decellularized ECM of antler reserve mesenchymal cells (RMCs), a xenogeneic material from antler stem cells, is superior to the currently available treatments for osteochondral defects.</p><p><strong>Methods: </strong>We isolated the RMCs from a 60-d-old sika deer antler and cultured them <i>in vitro</i> to 70% confluence; 50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition. Decellularized sheets of adipocyte-derived MSCs (aMSCs) and antlerogenic periosteal cells (another type of antler stem cells) were used as the controls. Three weeks after ascorbic acid stimulation, the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.</p><p><strong>Results: </strong>The defects were successfully repaired by applying the ECM-sheets. The highest quality of repair was achieved in the RMC-ECM group both <i>in vitro</i> (including cell attachment and proliferation), and <i>in vivo</i> (including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues). Notably, the antler-stem-cell-derived ECM (xenogeneic) performed better than the aMSC-ECM (allogenic), while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.</p><p><strong>Conclusion: </strong>Decellularized xenogeneic ECM derived from the antler stem cell, particularly the active form (RMC-ECM), can achieve high quality repair/reconstruction of osteochondral defects, suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of different concentrations of nicotinamide on hematopoietic stem cells cultured in vitro. 不同浓度的烟酰胺对体外培养造血干细胞的影响。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.163
Yan Ren, Yan-Ni Cui, Hong-Wei Wang
{"title":"Effects of different concentrations of nicotinamide on hematopoietic stem cells cultured <i>in vitro</i>.","authors":"Yan Ren, Yan-Ni Cui, Hong-Wei Wang","doi":"10.4252/wjsc.v16.i2.163","DOIUrl":"10.4252/wjsc.v16.i2.163","url":null,"abstract":"<p><strong>Background: </strong><i>In vitro</i> expansion to increase numbers of hematopoietic stem cells (HSCs) in cord blood could improve clinical efficacy of this vital resource. Nicotinamide (NAM) can promote HSC expansion <i>ex vivo</i>, but its effect on hematopoietic stem and progenitor cells (HSPCs, CD34<sup>+</sup>CD38) and functional subtypes of HSCs - short-term repopulating HSCs (ST-HSCs, CD34<sup>+</sup>CD38CD45RACD49f<sup>+</sup>) and long-term repopulating HSCs (LT-HSCs, CD34<sup>+</sup>CD38CD45RACD49f<sup>+</sup>CD90<sup>+</sup>) is not yet known. As a sirtuin 1 (SIRT1) inhibitor, NAM participates in regulating cell adhesion, polarity, migration, proliferation, and differentiation. However, SIRT1 exhibits dual effects by promoting or inhibiting differentiation in different tissues or cells. We propose that the concentration of NAM may influence proliferation, differentiation, and SIRT1 signaling of HSCs.</p><p><strong>Aim: </strong>To evaluate the effects and underlying mechanisms of action of different concentrations of NAM on HSC proliferation and differentiation.</p><p><strong>Methods: </strong>CD34<sup>+</sup> cells were purified from umbilical cord blood using MacsCD34 beads, and cultured for 10-12 d in a serum-free medium supplemented with cytokines, with different concentrations of NAM added according to experimental requirements. Flow cytometry was used to detect phenotype, cell cycle distribution, and apoptosis of the cultured cells. Real-time polymerase chain reaction was used to detect the transcription levels of target genes encoding stemness-related factors, chemokines, components of hypoxia pathways, and antioxidant enzymes. Dichloro-dihydro-fluorescein diacetate probes were used to evaluate intracellular production of reactive oxygen species (ROS). Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array.</p><p><strong>Results: </strong>Compared with the control group, the proportion and expansion folds of HSPCs (CD34<sup>+</sup>CD38) incubated with 5 mmol/L or 10 mmol/L NAM were significantly increased (all <i>P</i> < 0.05). The ST-HSCs ratio and fold expansion of the 5 mmol/L NAM group were significantly higher than those of the control and 10 mmol/L NAM groups (all <i>P</i> < 0.001), whereas the LT-HSCs ratio and fold expansion of the 10 mmol/L NAM group were significantly higher than those of the other two groups (all <i>P</i> < 0.05). When the NAM concentration was > 10 mmol/L, cell viability significantly decreased. In addition, compared with the 5 mmol/L NAM group, the proportion of apoptotic cells in the 10 mmol/L NAM group increased and the proportion of cells in S and G2 phase decreased. Compared with the 5 mmol/L NAM group, the HSCs incubated with 10 mmol/L NAM exhibited significantly inhibited SIRT1 expression, increased intracellular ROS content, and downregulated expression of genes encoding antioxidant enzymes (superoxide dismutase 1, peroxiredox","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human pluripotent stem cell-derived kidney organoids: Current progress and challenges. 人类多能干细胞衍生肾脏器官组织:当前的进展与挑战。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.114
Hong-Yan Long, Zu-Ping Qian, Qin Lan, Yong-Jie Xu, Jing-Jing Da, Fu-Xun Yu, Yan Zha
{"title":"Human pluripotent stem cell-derived kidney organoids: Current progress and challenges.","authors":"Hong-Yan Long, Zu-Ping Qian, Qin Lan, Yong-Jie Xu, Jing-Jing Da, Fu-Xun Yu, Yan Zha","doi":"10.4252/wjsc.v16.i2.114","DOIUrl":"10.4252/wjsc.v16.i2.114","url":null,"abstract":"<p><p>Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases: Recent advancements and prospects. 以人脐带间充质干细胞为基础的肺部疾病治疗方法:最新进展与前景。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.70
Min Meng, Wei-Wei Zhang, Shuang-Feng Chen, Da-Rui Wang, Chang-Hui Zhou
{"title":"Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases: Recent advancements and prospects.","authors":"Min Meng, Wei-Wei Zhang, Shuang-Feng Chen, Da-Rui Wang, Chang-Hui Zhou","doi":"10.4252/wjsc.v16.i2.70","DOIUrl":"10.4252/wjsc.v16.i2.70","url":null,"abstract":"<p><p>Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide. For diverse disease conditions, the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) isolated from the human UC have the capacity for self-renewal and multilineage differentiation. Moreover, in recent years, these cells have been demonstrated to have unique advantages in the treatment of lung diseases. We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases, including coronavirus disease 2019, acute respiratory distress syndrome, bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. In this review, we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application. Moreover, the underlying molecular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth. In brief, this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in hair follicle stem cell markers and their regulatory roles. 毛囊干细胞标志物及其调控作用的最新进展。
IF 4.1 3区 医学
World journal of stem cells Pub Date : 2024-02-26 DOI: 10.4252/wjsc.v16.i2.126
Yi-Zhan Xing, Hai-Ying Guo, Fei Xiang, Yu-Hong Li
{"title":"Recent progress in hair follicle stem cell markers and their regulatory roles.","authors":"Yi-Zhan Xing, Hai-Ying Guo, Fei Xiang, Yu-Hong Li","doi":"10.4252/wjsc.v16.i2.126","DOIUrl":"10.4252/wjsc.v16.i2.126","url":null,"abstract":"<p><p>Hair follicle stem cells (HFSCs) in the bulge are a multipotent adult stem cell population. They can periodically give rise to new HFs and even regenerate the epidermis and sebaceous glands during wound healing. An increasing number of biomarkers have been used to isolate, label, and trace HFSCs in recent years. Considering more detailed data from single-cell transcriptomics technology, we mainly focus on the important HFSC molecular markers and their regulatory roles in this review.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信