{"title":"γ-氨基丁酸通过TXNIP调控增强miR-21-5p在脂肪干细胞细胞外囊泡中的负载,从而缓解心肌缺血再灌注损伤。","authors":"Feng-Dan Wang, Yi Ding, Jian-Hong Zhou, En Zhou, Tian-Tian Zhang, Yu-Qi Fan, Qing He, Zong-Qi Zhang, Cheng-Yu Mao, Jun-Feng Zhang, Jing Zhou","doi":"10.4252/wjsc.v16.i10.873","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial ischemia-reperfusion injury (MIRI) poses a prevalent challenge in current reperfusion therapies, with an absence of efficacious interventions to address the underlying causes.</p><p><strong>Aim: </strong>To investigate whether the extracellular vesicles (EVs) secreted by adipose mesenchymal stem cells (ADSCs) derived from subcutaneous inguinal adipose tissue (IAT) under γ-aminobutyric acid (GABA) induction (GABA-EVs<sup>IAT</sup>) demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA. We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays. The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds. To explore the functional RNA diversity between EVs<sup>IAT</sup> and GABA-EVs<sup>IAT</sup>, we employed microRNA (miR) sequencing. Through a dual-luciferase reporter assay, we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein (TXNIP). Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.</p><p><strong>Results: </strong>Our study demonstrates that, under the influence of GABA, ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs. Consequently, this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention, ultimately resulting in myocardial protection. On a molecular mechanism level, EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.</p><p><strong>Conclusion: </strong>Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs, thereby regulating the expression of TXNIP. The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"16 10","pages":"873-895"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gamma-aminobutyric acid enhances miR-21-5p loading into adipose-derived stem cell extracellular vesicles to alleviate myocardial ischemia-reperfusion injury <i>via</i> TXNIP regulation.\",\"authors\":\"Feng-Dan Wang, Yi Ding, Jian-Hong Zhou, En Zhou, Tian-Tian Zhang, Yu-Qi Fan, Qing He, Zong-Qi Zhang, Cheng-Yu Mao, Jun-Feng Zhang, Jing Zhou\",\"doi\":\"10.4252/wjsc.v16.i10.873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myocardial ischemia-reperfusion injury (MIRI) poses a prevalent challenge in current reperfusion therapies, with an absence of efficacious interventions to address the underlying causes.</p><p><strong>Aim: </strong>To investigate whether the extracellular vesicles (EVs) secreted by adipose mesenchymal stem cells (ADSCs) derived from subcutaneous inguinal adipose tissue (IAT) under γ-aminobutyric acid (GABA) induction (GABA-EVs<sup>IAT</sup>) demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA. We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays. The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds. To explore the functional RNA diversity between EVs<sup>IAT</sup> and GABA-EVs<sup>IAT</sup>, we employed microRNA (miR) sequencing. Through a dual-luciferase reporter assay, we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein (TXNIP). Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.</p><p><strong>Results: </strong>Our study demonstrates that, under the influence of GABA, ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs. Consequently, this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention, ultimately resulting in myocardial protection. On a molecular mechanism level, EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.</p><p><strong>Conclusion: </strong>Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs, thereby regulating the expression of TXNIP. The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.</p>\",\"PeriodicalId\":23775,\"journal\":{\"name\":\"World journal of stem cells\",\"volume\":\"16 10\",\"pages\":\"873-895\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4252/wjsc.v16.i10.873\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v16.i10.873","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Gamma-aminobutyric acid enhances miR-21-5p loading into adipose-derived stem cell extracellular vesicles to alleviate myocardial ischemia-reperfusion injury via TXNIP regulation.
Background: Myocardial ischemia-reperfusion injury (MIRI) poses a prevalent challenge in current reperfusion therapies, with an absence of efficacious interventions to address the underlying causes.
Aim: To investigate whether the extracellular vesicles (EVs) secreted by adipose mesenchymal stem cells (ADSCs) derived from subcutaneous inguinal adipose tissue (IAT) under γ-aminobutyric acid (GABA) induction (GABA-EVsIAT) demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.
Methods: We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA. We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays. The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds. To explore the functional RNA diversity between EVsIAT and GABA-EVsIAT, we employed microRNA (miR) sequencing. Through a dual-luciferase reporter assay, we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein (TXNIP). Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.
Results: Our study demonstrates that, under the influence of GABA, ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs. Consequently, this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention, ultimately resulting in myocardial protection. On a molecular mechanism level, EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.
Conclusion: Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs, thereby regulating the expression of TXNIP. The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.