Vision ResearchPub Date : 2024-09-18DOI: 10.1016/j.visres.2024.108486
Bhagya Lakshmi Marella , Miriam L. Conway , Pravin K. Vaddavalli , Catherine M. Suttle , Shrikant R. Bharadwaj
{"title":"Optical phase nullification partially restores visual and stereo acuity lost to simulated blur from higher-order wavefront aberrations of keratoconic eyes","authors":"Bhagya Lakshmi Marella , Miriam L. Conway , Pravin K. Vaddavalli , Catherine M. Suttle , Shrikant R. Bharadwaj","doi":"10.1016/j.visres.2024.108486","DOIUrl":"10.1016/j.visres.2024.108486","url":null,"abstract":"<div><p>Contrast demodulation and phase distortions are exaggerated in retinal images blurred by the higher-order wavefront aberrations of keratoconic eyes. While the performance loss from the former parameter is well understood, little is known about the impact of the latter on visual functions in this disease condition. The present study investigated the impact of phase distortions on the monocular logMAR visual acuity, letter discriminability and random-dot stereoacuity of seventeen visually healthy adults (ten for visual acuity and letter discriminability; ten for stereoacuity and three common to both experiments) using images that were computationally blurred by four different higher-order wavefront aberration profiles of keratoconic eyes that showed significant distortions in the phase spectrum. Participants viewed these images through 2 mm artificial pupils to negate their native ocular wavefront aberrations. The results showed progressive losses in visual acuity and stereoacuity with increasing blur, a third of which could be recovered following phase nullification. Letter discriminability also improved following phase nullification, more so for smaller than larger optotypes. Stereoacuity loss and, consequently, its recovery following phase nullification was more prominent for profiles simulating unilateral asymmetric keratoconus than for profiles simulating bilateral symmetric keratoconus. These results agree with previous reports obtained from blur induced with lower-order aberrations and indicate that a similar trend may be observed for more complex patterns of blur like keratoconus. Overall, both contrast demodulation and misalignment of the local features of the blurred image may contribute to losses of spatial and depth vision in keratoconus. Phase nullification may partially mitigate these losses, thereby allowing the processing of finer spatial details and veridical disparity estimations for improved depth perception.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"224 ","pages":"Article 108486"},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-09-12DOI: 10.1016/j.visres.2024.108485
Lea Ingrassia , Barbara Swiatczak , Frank Schaeffel
{"title":"Two different visual stimuli that cause axial eye shortening have no additive effect","authors":"Lea Ingrassia , Barbara Swiatczak , Frank Schaeffel","doi":"10.1016/j.visres.2024.108485","DOIUrl":"10.1016/j.visres.2024.108485","url":null,"abstract":"<div><p>Previous studies identified two visual stimuli that can shorten the human eye by thickening the choroid after short-term visual stimulation, potentially inhibiting myopia: (1) watching digitally filtered movies where the red plane has full spatial resolution while green and blue are low-pass filtered according to the human longitudinal chromatic aberration (LCA) function (the “red in focus” filter), and (2) reading text with inverted contrast. This study aimed to determine whether combining these two stimuli would have an additive effect on axial length. Twenty-two emmetropic subjects were recruited to read text (standard and inverted contrast) for 30 min from a large screen, 2 m away, either unfiltered or filtered with the “red in focus” filter. Axial length was measured before and after each reading episode using low-coherence interferometry (Lenstar LS 900, Haag Streit). Reading text with conventional contrast polarity (dark letters on a bright background) resulted in no significant axial length change. Adding the “red in focus” filter did not alter the outcome. Consistent with previous findings, reading inverted contrast text made emmetropic eyes shorter. Surprisingly, when the text was combined with the “red in focus” filter, eyes became longer rather than shorter. A possible explanation for this contradictory result is that, for the text stimulus, the “red in focus” filter removes spatial information in the blue channel needed by the retina to use LCA analysis to thicken the choroid.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"224 ","pages":"Article 108485"},"PeriodicalIF":1.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924001299/pdfft?md5=25f92cb2513b50b87cd528396e732a2e&pid=1-s2.0-S0042698924001299-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-09-10DOI: 10.1016/j.visres.2024.108484
Olga Leticevscaia , Talia Brandman , Marius V. Peelen
{"title":"Scene context and attention independently facilitate MEG decoding of object category","authors":"Olga Leticevscaia , Talia Brandman , Marius V. Peelen","doi":"10.1016/j.visres.2024.108484","DOIUrl":"10.1016/j.visres.2024.108484","url":null,"abstract":"<div><p>Many of the objects we encounter in our everyday environments would be hard to recognize without any expectations about these objects. For example, a distant silhouette may be perceived as a car because we expect objects of that size, positioned on a road, to be cars. Reflecting the influence of such expectations on visual processing, neuroimaging studies have shown that when objects are poorly visible, expectations derived from scene context facilitate the representations of these objects in visual cortex from around 300 ms after scene onset. The current magnetoencephalography (MEG) study tested whether this facilitation occurs independently of attention and task relevance. Participants viewed degraded objects alone or within scene context while they either attended the scenes (attended condition) or the fixation cross (unattended condition), also temporally directing attention away from the scenes. Results showed that at 300 ms after stimulus onset, multivariate classifiers trained to distinguish clearly visible animate vs inanimate objects generalized to distinguish degraded objects in scenes better than degraded objects alone, despite the added clutter of the scene background. Attention also modulated object representations at this latency, with better category decoding in the attended than the unattended condition. The modulatory effects of context and attention were independent of each other. Finally, data from the current study and a previous study were combined (N = 51) to provide a more detailed temporal characterization of contextual facilitation. These results extend previous work by showing that facilitatory scene-object interactions are independent of the specific task performed on the visual input.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"224 ","pages":"Article 108484"},"PeriodicalIF":1.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924001287/pdfft?md5=71069484f081043895f18f372fa0d24a&pid=1-s2.0-S0042698924001287-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-08-31DOI: 10.1016/j.visres.2024.108475
Samuel M. Wu, Ji-Jie Pang
{"title":"Effects of elevated intraocular pressure on alpha ganglion cells in experimental glaucoma mice","authors":"Samuel M. Wu, Ji-Jie Pang","doi":"10.1016/j.visres.2024.108475","DOIUrl":"10.1016/j.visres.2024.108475","url":null,"abstract":"<div><p>Glaucoma is a leading cause of blindness worldwide and glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs. Combining some previous published results and some new data, this paper provides our current view on how high IOP (H-IOP) affects the light response sensitivity of a subset of RGCs, the alpha-ganglion cells (αGCs), as well as their presynaptic bipolar cells (DBCs and HBCs) and A2 amacrine cells (AIIACs) in dark-adapted mouse retinas. Our data demonstrate that H-IOP in experimental glaucoma mice significantly decreases light-evoked spike response sensitivity of sONαGCs and sOFFαGCs (i.e., raises thresholds by 1.5–2.5 log units), but not that of the tONαGCs and tOFFαGCs. The sensitivity loss in sONαGCs and sOFFαGCs is mediated by a H-IOP induced suppression of AIIAC response which is caused by a decrease of transmission efficacy of the DBC<sub>R</sub>→AIIAC synapse. We also provide evidence supporting the hypothesis that BK channels in the A17AC→DBC<sub>R</sub> feedback synapse are the H-IOP sensor that regulates the DBC<sub>R</sub>→AIIAC synaptic efficacy, as BK channel blocker IBTX mimics the action of H-IOP. Our results provide useful information for designing strategies for early detection and possible treatments of glaucoma as physiological changes occur before irreversible structural damage.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"224 ","pages":"Article 108475"},"PeriodicalIF":1.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-08-28DOI: 10.1016/j.visres.2024.108477
Rajanya Ghosh , Samuel Herberg
{"title":"The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm’s canal cell dysfunction","authors":"Rajanya Ghosh , Samuel Herberg","doi":"10.1016/j.visres.2024.108477","DOIUrl":"10.1016/j.visres.2024.108477","url":null,"abstract":"<div><p>This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm’s canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"224 ","pages":"Article 108477"},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-08-28DOI: 10.1016/j.visres.2024.108463
Chien-Chia Su , Crystal Liu , Vishnu Adi , Kevin C. Chan , Henry C. Tseng
{"title":"Age-related effects of optineurin deficiency in the mouse eye","authors":"Chien-Chia Su , Crystal Liu , Vishnu Adi , Kevin C. Chan , Henry C. Tseng","doi":"10.1016/j.visres.2024.108463","DOIUrl":"10.1016/j.visres.2024.108463","url":null,"abstract":"<div><p>Optineurin (<em>OPTN</em>) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (<em>Optn<sup>−/</sup></em><sup>−</sup>) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN’s role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2–3 months) or aged (12 months) mice. When retinal layers were quantitated, young <em>Optn<sup>−/</sup></em><sup>−</sup> mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in <em>Optn<sup>−/</sup></em><sup>−</sup> mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by <em>Optn</em> deletion, more dopaminergic amacrine cells were observed in aged <em>Optn<sup>−/</sup></em><sup>−</sup> mice. Taken together, our findings showed that complete loss of <em>Optn</em> resulted in mild retinal changes and less visual function impairment, supporting the possibility that <em>OPTN</em>-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these <em>Optn</em> mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"224 ","pages":"Article 108463"},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-08-23DOI: 10.1016/j.visres.2024.108473
Julian Garcia-Sanchez , Danting Lin , Wendy W. Liu
{"title":"Mechanosensitive ion channels in glaucoma pathophysiology","authors":"Julian Garcia-Sanchez , Danting Lin , Wendy W. Liu","doi":"10.1016/j.visres.2024.108473","DOIUrl":"10.1016/j.visres.2024.108473","url":null,"abstract":"<div><p>Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families—PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"223 ","pages":"Article 108473"},"PeriodicalIF":1.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-08-22DOI: 10.1016/j.visres.2024.108474
Meral Kurt , Seçil Karakoca Nemli , Merve Bankoğlu Güngör , Bilge Turhan Bal , Ebru Öztürk
{"title":"Perceptibility and acceptability thresholds for color differences of light and dark maxillofacial skin replications","authors":"Meral Kurt , Seçil Karakoca Nemli , Merve Bankoğlu Güngör , Bilge Turhan Bal , Ebru Öztürk","doi":"10.1016/j.visres.2024.108474","DOIUrl":"10.1016/j.visres.2024.108474","url":null,"abstract":"<div><p>The aim of this study was to assess the perceptibility and acceptability thresholds of maxillofacial silicones for light and dark skin colors and to evaluate the effect of gender and professional experience on these thresholds. Two different sets of specimens (as light and dark) each, consisting of 14 (25 × 25 × 6-mm<sup>3</sup>) silicone skin replications, were produced. Four specimens of each set were produced from the same silicon mixture of the relevant set and polymerized simultaneously to provide standardized fabrication conditions. These 4 light/dark specimens were assigned as “baseline color specimens (BCs)” in each set, while the other 10 specimens were produced with a color difference level that increased gradually from BC. These stepped levels were obtained by controlled increasing of the pigment concentration in the relevant baseline silicon mixture. Color difference levels of specimens were calculated by using the CIELAB and CIEDE2000 formulas. Observers comprised of 3 different professional experiences as first-year dental students, interns, and dentists (n = 30/group, gender-balanced) were included. Combinations consisting of 5 specimens with 4 BCs and 1 different color were shown to the observers to assess whether the color difference was perceptible or acceptable. Perceptibility and acceptability percentages were regressed with color difference levels to estimate the best fit curve and confidence intervals were calculated (α = 0.05). The highest estimation of the coefficient of determination (R<sup>2</sup>) was found in the cubic curve for all parameters. A significant difference was found between the light and dark colors. The perceptibility thresholds (Δ<em>E</em>*<em><sub>ab</sub></em>/Δ<em>E<sub>00</sub></em>) were 0.8/0.59 and 2.63/1.75 for light and dark colors, respectively. The acceptability thresholds (Δ<em>E</em>*<em><sub>ab</sub></em>/Δ<em>E<sub>00</sub></em>) were 3.35/2.25, 10.07/7.04 for light and dark colors, respectively. No significant differences were found between gender and among experience groups concerning visual thresholds. Regardless of gender and experience, observers could perceive color differences more easily in light skin colors.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"223 ","pages":"Article 108474"},"PeriodicalIF":1.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision ResearchPub Date : 2024-08-22DOI: 10.1016/j.visres.2024.108465
Christopher A. Girkin , Ryan G. Strickland , McKenna M. Somerville , Mary Anne Garner , Gregory H. Grossman , Alan Blake , Nilesh Kumar , Lara Ianov , Massimo A. Fazio , Mark E. Clark , Alecia K. Gross
{"title":"Acute ocular hypertension in the living human eye: Model description and initial cellular responses to elevated intraocular pressure","authors":"Christopher A. Girkin , Ryan G. Strickland , McKenna M. Somerville , Mary Anne Garner , Gregory H. Grossman , Alan Blake , Nilesh Kumar , Lara Ianov , Massimo A. Fazio , Mark E. Clark , Alecia K. Gross","doi":"10.1016/j.visres.2024.108465","DOIUrl":"10.1016/j.visres.2024.108465","url":null,"abstract":"<div><p>This initial methods study presents the initial immunohistochemical and transcriptomic changes in the optic nerve head and retina from three research-consented brain-dead organ donors following prolonged and transient intraocular pressure (IOP) elevation. In this initial study, research-consented brain-dead organ donors were exposed to unilateral elevation of IOP for 7.5 h (Donor 1), 30 h (Donor 2), and 1 h (Donor 3) prior to organ procurement. Optic nerve tissue and retinal tissue was obtained following organ procurement for immunohistological and transcriptomic analysis.</p><p>Optic nerve sections in Donor 1 exposed to 7.5-hours of unilateral sub-ischemic IOP elevation demonstrated higher levels of protein expression of the astrocytic marker, glial fibrillary acidic protein (GFAP), within the lamina cribrosa with greatest expression inferior temporally in the treated eye compared to control. Spatial transcriptomic analysis performed on optic nerve head tissues from Donor 2 exposed to 30 h of unilateral IOP elevation demonstrated differential transcription of mRNA across laminar and scleral regions. Immunohistochemistry of retinal sections from Donor 2 exhibited higher GFAP and IBA1 expression in the treated eye compared with control, but this was not observed in Donor 3, which was exposed to only 1-hour of IOP elevation. While there were no differences in GFAP protein expression in the retina following the 1-hour IOP elevation in Donor 3, there were higher levels of transcription of GFAP in the inner nuclear layer, and CD44 in the retinal ganglion cell layer, indicative of astrocytic and Müller glial reactivity as well as an early inflammatory response, respectively.</p><p>We found that transcriptomic differences can be observed across treated and control eyes following unilateral elevation of IOP in brain dead organ donors. The continued development of this model affords the unique opportunity to define the acute mechanotranscriptomic response of the optic nerve head, evaluate the injury and repair mechanisms in the retina in response to IOP elevation, and enable correlation of <em>in vivo</em> imaging and functional testing with <em>ex vivo</em> cellular responses for the first time in the living human eye.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"223 ","pages":"Article 108465"},"PeriodicalIF":1.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924001093/pdfft?md5=e2c25e2712dbf4d114f46b573136c57c&pid=1-s2.0-S0042698924001093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}