Manuel G Bruera, María M Benedetto, Mario E Guido, Alicia L Degano, María A Contin
{"title":"Glial cell response to constant low light exposure in rat retina.","authors":"Manuel G Bruera, María M Benedetto, Mario E Guido, Alicia L Degano, María A Contin","doi":"10.1017/S0952523822000049","DOIUrl":"https://doi.org/10.1017/S0952523822000049","url":null,"abstract":"<p><p>To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40377931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ching-Feng Chen, R. R. Wo, Chien-Ting Huang, Tzu-Lin Cheng, Juu-Chin Lu, Chih-Tien Wang
{"title":"Phosphorylation of cysteine string protein-α up-regulates the frequency of cholinergic waves via starburst amacrine cells","authors":"Ching-Feng Chen, R. R. Wo, Chien-Ting Huang, Tzu-Lin Cheng, Juu-Chin Lu, Chih-Tien Wang","doi":"10.1017/S0952523822000013","DOIUrl":"https://doi.org/10.1017/S0952523822000013","url":null,"abstract":"Abstract During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44241022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H Shabani, Mahdi Sadeghi, E Zrenner, D L Rathbun, Z Hosseinzadeh
{"title":"Classification of pseudocalcium visual responses from mouse retinal ganglion cells-CORRIGENDUM.","authors":"H Shabani, Mahdi Sadeghi, E Zrenner, D L Rathbun, Z Hosseinzadeh","doi":"10.1017/S0952523822000037","DOIUrl":"10.1017/S0952523822000037","url":null,"abstract":"","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46718328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Hao Liu, David Olukoya Peter, Maren Sofie Faldalen Guttormsen, Md Kaykobad Hossain, Yola Gerking, Margaret Lin Veruki, Espen Hartveit
{"title":"The mosaic of AII amacrine cell bodies in rat retina is indistinguishable from a random distribution.","authors":"Jian Hao Liu, David Olukoya Peter, Maren Sofie Faldalen Guttormsen, Md Kaykobad Hossain, Yola Gerking, Margaret Lin Veruki, Espen Hartveit","doi":"10.1017/S0952523822000025","DOIUrl":"https://doi.org/10.1017/S0952523822000025","url":null,"abstract":"<p><p>The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10597698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas T Norton, Elise L Savier, Madineh Sedigh-Sarvestani
{"title":"DeBruyn and Casagrande manuscripts on tree shrew retinal ganglion cells as a basis for cross-species retina research.","authors":"Thomas T Norton, Elise L Savier, Madineh Sedigh-Sarvestani","doi":"10.1017/S0952523821000171","DOIUrl":"10.1017/S0952523821000171","url":null,"abstract":"<p><p>The purpose of this brief communication is to make publicly available three unpublished manuscripts on the organization of retinal ganglion cells in the tree shrew. The manuscripts were authored in 1986 by Dr. Edward DeBruyn, a PhD student in the laboratory of the late Dr. Vivien Casagrande at Vanderbilt University. As diurnal animals closely related to primates, tree shrews are ideally suited for comparative analyses of visual structures including the retina. We hope that providing this basic information in a citable form inspires other groups to pursue further characterization of the tree shrew retina using modern techniques.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39733241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H Shabani, Mahdi Sadeghi, E Zrenner, D L Rathbun, Z Hosseinzadeh
{"title":"Classification of pseudocalcium visual responses from mouse retinal ganglion cells.","authors":"H Shabani, Mahdi Sadeghi, E Zrenner, D L Rathbun, Z Hosseinzadeh","doi":"10.1017/S0952523821000158","DOIUrl":"10.1017/S0952523821000158","url":null,"abstract":"<p><p>Recently, a detailed catalog of 32 retinal ganglion cell (RGC) visual response patterns in mouse has emerged. However, the 10,000 samples required for this catalog-based on fluorescent signals from a calcium indicator dye-are much harder to acquire from the extracellular spike train recordings underlying our bionic vision research. Therefore, we sought to convert spike trains into pseudocalcium signals so that our data could be directly matched to the 32 predefined, calcium signal-based groups. A microelectrode array (MEA) was used to record spike trains from mouse RGCs of 29 retinas. Visual stimuli were adapted from the Baden et al. study; including moving bars, full-field contrast and temporal frequency chirps, and black-white and UV-green color flashes. Spike train histograms were converted into pseudocalcium traces with an OGB-1 convolution kernel. Response features were extracted using sparse principal components analysis to match each RGC to one of the 32 RGC groups. These responses mapped onto of the 32 previously described groups; however, some of the groups remained unmatched. Thus, adaptation of the Baden et al. methodology for MEA recordings of spike trains instead of calcium recordings was partially successful. Different classification methods, however, will be needed to define clear RGC groups from MEA data for our bionic vision research. Nevertheless, others may pursue a pseudocalcium approach to reconcile spike trains with calcium signals. This work will help to guide them on the limitations and potential pitfalls of such an approach.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48491753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irina I Ignatova, Ilkka Miinalainen, Roman V Frolov
{"title":"Morphological and electrophysiological specializations of photoreceptors in the love spot of hover fly Volucella pellucens.","authors":"Irina I Ignatova, Ilkka Miinalainen, Roman V Frolov","doi":"10.1017/S0952523821000146","DOIUrl":"https://doi.org/10.1017/S0952523821000146","url":null,"abstract":"<p><p>Studies of functional variability in the compound eyes of flies reveal superior temporal resolution of photoreceptors from the frontal areas that mediate binocular vision, and in males mate recognition and pursuit. However, the mechanisms underlying differences in performance are not known. Here, we investigated properties of hover fly Volucella pellucens photoreceptors from two regions of the retina, the frontal-dorsal \"love spot\" and the lateral one. Morphologically, the microvilli of the frontal-dorsal photoreceptors were relatively few in number per rhabdomere cross-section, short and narrow. In electrophysiological experiments involving stimulation with prolonged white-noise and natural time intensity series, frontal-dorsal photoreceptors demonstrated comparatively high corner frequencies and information rates. Investigation of possible mechanisms responsible for their superior performance revealed significant differences in the properties of quantum bumps, and, unexpectedly, relatively high absolute sensitivity of the frontal-dorsal photoreceptors. Analysis of light adaptation indicated that photoreceptors from two regions adapt similarly but because frontal-dorsal photoreceptors were depolarized much stronger by the same stimuli than the lateral photoreceptors, they reached a deeper state of adaptation associated with higher corner frequencies of light response. Recordings from the photoreceptor axons were characterized by spike-like events that can significantly expand the frequency response range. Seamless integration of spikes into the graded voltage responses was enabled by light adaptation mechanisms that accelerate kinetics and decrease duration of depolarizing light response transients.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39506704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure and function of the gap junctional network of photoreceptive ganglion cells.","authors":"Xiwu Zhao, Kwoon Y Wong","doi":"10.1017/S0952523821000134","DOIUrl":"https://doi.org/10.1017/S0952523821000134","url":null,"abstract":"<p><p>Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only anterogradely to drive behavioral responses, but also retrogradely to some amacrine interneurons to modulate retinal physiology. We previously found that all displaced amacrine cells with spiking, tonic excitatory photoresponses receive gap-junction input from ipRGCs, but the connectivity patterns and functional roles of ipRGC-amacrine coupling remained largely unknown. Here, we injected PoPro1 fluorescent tracer into all six types of mouse ipRGCs to identify coupled amacrine cells, and analyzed the latter's morphological and electrophysiological properties. We also examined how genetically disrupting ipRGC-amacrine coupling affected ipRGC photoresponses. Results showed that ipRGCs couple with not just ON- and ON/OFF-stratified amacrine cells in the ganglion-cell layer as previously reported, but also OFF-stratified amacrine cells in both ganglion-cell and inner nuclear layers. M1- and M3-type ipRGCs couple mainly with ON/OFF-stratified amacrine cells, whereas the other ipRGC types couple almost exclusively with ON-stratified ones. ipRGCs transmit melanopsin-based light responses to at least 93% of the coupled amacrine cells. Some of the ON-stratifying ipRGC-coupled amacrine cells exhibit transient hyperpolarizing light responses. We detected bidirectional electrical transmission between an ipRGC and a coupled amacrine cell, although transmission was asymmetric for this particular cell pair, favoring the ipRGC-to-amacrine direction. We also observed electrical transmission between two amacrine cells coupled to the same ipRGC. In both scenarios of coupling, the coupled cells often spiked synchronously. While ipRGC-amacrine coupling somewhat reduces the peak firing rates of ipRGCs' intrinsic melanopsin-based photoresponses, it renders these responses more sustained and longer-lasting. In summary, ipRGCs' gap junctional network involves more amacrine cell types and plays more roles than previously appreciated.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753619/pdf/nihms-1855317.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10696150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein kinase A regulation of pigment granule motility in retinal pigment epithelial cells from fish, <i>Lepomis</i> spp.","authors":"Nicole E Leitner, Christina King-Smith","doi":"10.1017/S0952523821000122","DOIUrl":"https://doi.org/10.1017/S0952523821000122","url":null,"abstract":"<p><p>Retinomotor movements include elongation and contraction of rod and cone photoreceptors, and mass migration of melanin-containing pigment granules (melanosomes) of the retinal pigment epithelium (RPE) within the eyes of fish, frogs, and other lower vertebrates. Eyes of these animals do not contain dilatable pupils; therefore the repositioning of the rods and cones and a moveable curtain of pigment granules serve to modulate light intensity within the eye. RPE from sunfish (Lepomis spp.) can be isolated from the eye and dissociated into single cells, allowing in vitro studies of the cytoskeletal and regulatory mechanisms of organelle movement. Pigment granule aggregation from distal tips of apical projections into the cell body can be triggered by the application of underivatized cAMP, and dispersion is effected by cAMP washout in the presence of dopamine. While the phenomenon of cAMP-dependent pigment granule aggregation in isolated RPE was described many years ago, whether cAMP acts through the canonical cAMP-PKA pathway to stimulate motility has never been demonstrated. Here, we show that pharmacological inhibition of PKA blocks pigment granule aggregation, and microinjection of protein kinase A catalytic subunit triggers pigment granule aggregation. Treatment with a cAMP agonist that activates the Rap GEF, Epac (Effector protein activated by cAMP), had no effect on pigment granule position. Taken together, these results confirm that cAMP activates RPE pigment granule motility by the canonical cAMP-PKA pathway. Isolated RPE cells labeled with antibodies against PKA RIIα and against PKA-phosphorylated serine/threonine amino acids show diffuse, punctate labeling throughout the RPE cell body and apical projections. Immunoblotting of RPE lysates using the anti-PKA substrate antibody demonstrated seven prominent bands; two bands in particular at 27 and 64 kD showed increased levels of phosphorylation in the presence of cAMP, indicating their phosphorylation could contribute to the pigment granule aggregation mechanism.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39418214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Ankeeta, S Senthil Kumaran, Rohit Saxena, N R Jagannathan
{"title":"Structural and white matter changes associated with duration of Braille education in early and late blind children.","authors":"A Ankeeta, S Senthil Kumaran, Rohit Saxena, N R Jagannathan","doi":"10.1017/S0952523821000080","DOIUrl":"https://doi.org/10.1017/S0952523821000080","url":null,"abstract":"<p><p>In early (EB) and late blind (LB) children, vision deprivation produces cross-modal plasticity in the visual cortex. The progression of structural- and tract-based spatial statistics changes in the visual cortex in EB and LB, as well as their impact on global cognition, have yet to be investigated. The purpose of this study was to determine the cortical thickness (CT), gyrification index (GI), and white matter (WM) integrity in EB and LB children, as well as their association to the duration of blindness and education. Structural and diffusion tensor imaging data were acquired in a 3T magnetic resonance imaging in EB and LB children (n = 40 each) and 30 sighted controls (SCs) and processed using CAT12 toolbox and FSL software. Two sample t-test was used for group analyses with P < 0.05 (false discovery rate-corrected). Increased CT in visual, sensory-motor, and auditory areas, and GI in bilateral visual cortex was observed in EB children. In LB children, the right visual cortex, anterior-cingulate, sensorimotor, and auditory areas showed increased GI. Structural- and tract-based spatial statistics changes were observed in anterior visual pathway, thalamo-cortical, and corticospinal tracts, and were correlated with education onset and global cognition in EB children. Reduced impairment in WM, increased CT and GI and its correlation with global cognitive functions in visually impaired children suggests cross-modal plasticity due to adaptive compensatory mechanism (as compared to SCs). Reduced CT and increased FA in thalamo-cortical areas in EB suggest synaptic pruning and alteration in WM integrity. In the visual cortical pathway, higher education and the development of blindness modify the morphology of brain areas and influence the probabilistic tractography in EB rather than LB.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39338042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}