半胱氨酸链蛋白-α磷酸化通过星形细胞无长突上调胆碱能波频率

IF 1.1 4区 医学 Q4 NEUROSCIENCES
Ching-Feng Chen, R. R. Wo, Chien-Ting Huang, Tzu-Lin Cheng, Juu-Chin Lu, Chih-Tien Wang
{"title":"半胱氨酸链蛋白-α磷酸化通过星形细胞无长突上调胆碱能波频率","authors":"Ching-Feng Chen, R. R. Wo, Chien-Ting Huang, Tzu-Lin Cheng, Juu-Chin Lu, Chih-Tien Wang","doi":"10.1017/S0952523822000013","DOIUrl":null,"url":null,"abstract":"Abstract During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation of cysteine string protein-α up-regulates the frequency of cholinergic waves via starburst amacrine cells\",\"authors\":\"Ching-Feng Chen, R. R. Wo, Chien-Ting Huang, Tzu-Lin Cheng, Juu-Chin Lu, Chih-Tien Wang\",\"doi\":\"10.1017/S0952523822000013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0952523822000013\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523822000013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要在啮齿类动物出生后的第一周,胆碱能视网膜波在星突无长突细胞(SACs)中启动,传播到视网膜神经节细胞(RGCs)和视觉中心,这对视觉回路的精细化至关重要。通过调节SAC的胞吐作用,蛋白激酶A(PKA)活性的动态变化可以调节胆碱能波的时空模式。此前,发现半胱氨酸链蛋白-α(CSPα)通过PKA介导的丝氨酸10磷酸化与核心胞外机制相互作用(S10)。然而,PKA介导的CSPα磷酸化是否可以通过SAC调节胆碱能波仍然未知。在这里,我们研究了SACs中CSPα磷酸化如何调节胆碱能波。首先,我们确定CSPα1是出生后第一周大鼠SAC和内部丛状层发育的主要亚型。使用SAC特异性表达,我们发现与对照、野生型CSPα1(CSP-WT)或两种PKA拟磷酸突变体(CSP-S10D和CSP-S10E)相比,CSPα1-PKA磷酸缺陷突变体(CSPS-S10A)降低了波频率,但没有改变波空间相关性。这表明SAC中的CSPα-S10磷酸缺乏抑制了胆碱能波的频率。此外,与对照或CSP-WT相比,过表达CSP-S10A的SAC中磷酸化PKA底物的水平显著降低,这表明抑制的波频率与PKA活性的降低有关。此外,与对照或CSP-WT相比,SAC中的CSP-S10A降低了相邻RGC中波相关突触后电流(PSC)的周期性,这表明这些RGC从过表达CSP-S10A的SAC接收到了减弱的突触输入。最后,与对照组或CSP-WT相比,SAC中的CSP-S10A降低了PSC振幅和PSC峰值斜率,表明CSPα-S10磷酸缺乏可能会抑制SAC-RGC的传播速度。因此,通过PKA介导的磷酸化,SAC中的CSPα可能促进SAC-RGC的传递,有助于胆碱能波的强大频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphorylation of cysteine string protein-α up-regulates the frequency of cholinergic waves via starburst amacrine cells
Abstract During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信