Jian Hao Liu, David Olukoya Peter, Maren Sofie Faldalen Guttormsen, Md Kaykobad Hossain, Yola Gerking, Margaret Lin Veruki, Espen Hartveit
{"title":"The mosaic of AII amacrine cell bodies in rat retina is indistinguishable from a random distribution.","authors":"Jian Hao Liu, David Olukoya Peter, Maren Sofie Faldalen Guttormsen, Md Kaykobad Hossain, Yola Gerking, Margaret Lin Veruki, Espen Hartveit","doi":"10.1017/S0952523822000025","DOIUrl":null,"url":null,"abstract":"<p><p>The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523822000025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.
期刊介绍:
Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.