Tissue Barriers最新文献

筛选
英文 中文
Antenatal Ureaplasma infection induces ovine small intestinal goblet cell defects: a strong link with NEC pathology. 产前支原体感染诱导绵羊小肠杯状细胞缺陷:与NEC病理学密切相关。
IF 3.1
Tissue Barriers Pub Date : 2023-10-02 Epub Date: 2022-12-28 DOI: 10.1080/21688370.2022.2158016
Charlotte van Gorp, Ilse H de Lange, Matthias C Hütten, Carmen López-Iglesias, Kimberly Ri Massy, Lilian Kessels, Boris Kramer, Willine van de Wetering, Brad Spiller, George M Birchenough, Wim G van Gemert, Luc J Zimmermann, Tim Gam Wolfs
{"title":"Antenatal Ureaplasma infection induces ovine small intestinal goblet cell defects: a strong link with NEC pathology.","authors":"Charlotte van Gorp,&nbsp;Ilse H de Lange,&nbsp;Matthias C Hütten,&nbsp;Carmen López-Iglesias,&nbsp;Kimberly Ri Massy,&nbsp;Lilian Kessels,&nbsp;Boris Kramer,&nbsp;Willine van de Wetering,&nbsp;Brad Spiller,&nbsp;George M Birchenough,&nbsp;Wim G van Gemert,&nbsp;Luc J Zimmermann,&nbsp;Tim Gam Wolfs","doi":"10.1080/21688370.2022.2158016","DOIUrl":"10.1080/21688370.2022.2158016","url":null,"abstract":"<p><p>Disruption of the intestinal mucus barrier and intestinal epithelial endoplasmic reticulum (ER) stress contribute to necrotizing enterocolitis (NEC). Previously, we observed intestinal goblet cell loss and increased intestinal epithelial ER stress following chorioamnionitis. Here, we investigated how chorioamnionitis affects goblet cells by assessing their cellular characteristics. Importantly, goblet cell features are compared with those in clinical NEC biopsies. Mucus thickness was assessed as read-out of goblet cell function. Fetal lambs were intra-amniotically (IA) infected for 7d at 122 gestational age with <i>Ureaplasma parvum serovar-3</i>, the main microorganism clinically associated with chorioamnionitis. After preterm delivery, mucus thickness, goblet cell numbers, gut inflammation, epithelial proliferation and apoptosis and intestinal epithelial ER stress were investigated in the terminal ileum. Next, goblet cell morphological alterations (TEM) were studied and compared to human NEC samples. Ileal mucus thickness and goblet cell numbers were elevated following IA UP exposure. Increased pro-apoptotic ER stress, detected by elevated CHOP-positive cell counts and disrupted organelle morphology of secretory cells in the intestinal epithelium, was observed in IA UP exposed animals. Importantly, comparable cellular morphological alterations were observed in the ileum from NEC patients. In conclusion, UP-driven chorioamnionitis leads to a thickened ileal mucus layer and mucus hypersecretion from goblet cells. Since this was associated with pro-apoptotic ER stress and organelle disruption, mucus barrier alterations seem to occur at the expense of goblet cell resilience and may therefore predispose to detrimental intestinal outcomes. The remarkable overlap of these <i>in utero</i> findings with observations in NEC patients underscores their clinical relevance.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d9/87/KTIB_11_2158016.PMC10606782.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. EGFR、e -钙粘蛋白和PTP1B在表皮稳态中的相互作用。
IF 3.1
Tissue Barriers Pub Date : 2023-07-03 DOI: 10.1080/21688370.2022.2104085
Tessa Arnaud, Fernando Rodrigues-Lima, Mireille Viguier, Frédérique Deshayes
{"title":"Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis.","authors":"Tessa Arnaud,&nbsp;Fernando Rodrigues-Lima,&nbsp;Mireille Viguier,&nbsp;Frédérique Deshayes","doi":"10.1080/21688370.2022.2104085","DOIUrl":"https://doi.org/10.1080/21688370.2022.2104085","url":null,"abstract":"<p><p>Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364651/pdf/KTIB_11_2104085.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9866461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Delay of endothelial cell senescence protects cerebral barrier against age-related dysfunction: role of senolytics and senomorphics. 内皮细胞衰老的延迟保护脑屏障免受年龄相关功能障碍:衰老和形态的作用。
IF 3.1
Tissue Barriers Pub Date : 2023-07-03 DOI: 10.1080/21688370.2022.2103353
Jingyuan Ya, Rais Reskiawan A Kadir, Ulvi Bayraktutan
{"title":"Delay of endothelial cell senescence protects cerebral barrier against age-related dysfunction: role of senolytics and senomorphics.","authors":"Jingyuan Ya,&nbsp;Rais Reskiawan A Kadir,&nbsp;Ulvi Bayraktutan","doi":"10.1080/21688370.2022.2103353","DOIUrl":"https://doi.org/10.1080/21688370.2022.2103353","url":null,"abstract":"<p><p>Accumulation of senescent cells in cerebrovasculature is thought to play an important role in age-related disruption of blood-brain barrier (BBB). Using an <i>in vitro</i> model of human BBB, composed of brain microvascular endothelial cells (BMECs), astrocytes and pericytes, this study explored the so-called correlative link between BMEC senescence and the BBB dysfunction in the absence or presence of functionally distinct senotherapeutics. Replicative senescence was deemed present at passage ≥19 where BMECs displayed shortened telomere length, reduced proliferative and tubulogenic potentials and increased NADPH oxidase activity, superoxide anion production (markers of oxidative stress), S-β-galactosidase activity and γ-H2AX staining. Significant impairments observed in integrity and function of a model of BBB established with senescent BMECs, ascertained successively by decreases in transendothelial electrical resistance and increases in paracellular flux, revealed a close correlation between endothelial cell senescence and BBB dysfunction. Disruptions in the localization or expression of tight junction proteins, zonula occludens-1, occludin, and claudin-5 in senescent BMECs somewhat explained this dysfunction. Indeed, treatment of relatively old BMEC (passage 16) with a cocktail of senolytics (dasatinib and quercetin) or senomorphics targeting transcription factor NF-κB (QNZ), p38MAPK signaling pathway (BIRB-796) or pro-oxidant enzyme NADPH oxidase (VAS2870) until passage 20 rendered these cells more resistant to senescence and totally preserved BBB characteristics by restoring subcellular localization and expression of tight junction proteins. In conclusion, attempts that effectively mitigate accumulation of senescent endothelial cells in cerebrovasculature may prevent age-related BBB dysfunction and may be of prophylactic or therapeutic value to extend lifelong health and wellbeing.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364655/pdf/KTIB_11_2103353.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
LSR antibody promotes apoptosis and disrupts epithelial barriers via signal pathways in endometrial cancer. LSR抗体通过信号通路促进子宫内膜癌细胞凋亡和破坏上皮屏障。
IF 3.1
Tissue Barriers Pub Date : 2023-07-03 DOI: 10.1080/21688370.2022.2106113
Kimihito Saito, Takumi Konno, Takayuki Kohno, Hiroshi Shimada, Motoki Matsuura, Tadahi Okada, Arisa Kura, Daichi Ishii, Masuo Kondoh, Tsuyoshi Saito, Takashi Kojima
{"title":"LSR antibody promotes apoptosis and disrupts epithelial barriers via signal pathways in endometrial cancer.","authors":"Kimihito Saito,&nbsp;Takumi Konno,&nbsp;Takayuki Kohno,&nbsp;Hiroshi Shimada,&nbsp;Motoki Matsuura,&nbsp;Tadahi Okada,&nbsp;Arisa Kura,&nbsp;Daichi Ishii,&nbsp;Masuo Kondoh,&nbsp;Tsuyoshi Saito,&nbsp;Takashi Kojima","doi":"10.1080/21688370.2022.2106113","DOIUrl":"https://doi.org/10.1080/21688370.2022.2106113","url":null,"abstract":"<p><p>Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial barrier. LSR is highly expressed in well-differentiated endometrial endometrioid carcinoma (EEC), and its expression decreases during malignancy. Angubindin-1, a novel LSR ligand peptide, regulates tTJs without cytotoxicity, enhances paracellular permeability, and regulates epithelial barrier via c-Jun N-terminal kinase (JNK)/cofilin. In this study, we investigated the immune-modulatory roles of an anti-LSR antibody in the treatment of EEC in vitro compared to those of angubindin-1. We prepared an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) and angubindin-1. EEC cell-line Sawano cells in 2D and 2.5D cultures were treated with 100 μg/ml LSR-N-ab or 2.5 μg/ml angubindin-1 with or without protein tyrosine kinase 2β inhibitor PF431396 (PF43) and JNK inhibitor SP600125 (SP60) at 10 μM. Treatment with LSR-N-ab and angubindin-1 decreased LSR at the membranes of tTJs and the activity of phosphorylated LSR and phosphorylated cofilin in 2D culture. Treatment with LSR-N-ab and angubindin-1 decreased the epithelial barrier measured as TEER values in 2D culture and enhanced the epithelial permeability of FD-4 in 2.5D culture. Treatment with LSR-N-ab, but not angubindin-1, induced apoptosis in 2D culture. Pretreatment with PF43 and SP60 prevented all the changes induced by treatment with LSR-N-ab and angubindin-1. Treatment with LSR-N-ab and angubindin-1 enhanced the cell metabolism measured as the mitochondrial respiration levels in 2D culture. LSR-N-ab and angubindin-1 may be useful for therapy of human EEC via enhanced apoptosis or drug absorption.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364657/pdf/KTIB_11_2106113.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10230244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. 槲皮素对氧化锌纳米颗粒暴露大鼠小脑的神经保护作用。
IF 3.1
Tissue Barriers Pub Date : 2023-07-03 DOI: 10.1080/21688370.2022.2115273
Shaimaa A Abdelrahman, Amal S El-Shal, Abeer A Abdelrahman, Ebtehal Zaid Hassen Saleh, Abeer A Mahmoud
{"title":"Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats.","authors":"Shaimaa A Abdelrahman,&nbsp;Amal S El-Shal,&nbsp;Abeer A Abdelrahman,&nbsp;Ebtehal Zaid Hassen Saleh,&nbsp;Abeer A Mahmoud","doi":"10.1080/21688370.2022.2115273","DOIUrl":"https://doi.org/10.1080/21688370.2022.2115273","url":null,"abstract":"<p><p>Engineered nanomaterials induce hazardous effects at the cellular and molecular levels. We investigated different mechanisms underlying the neurotoxic potential of zinc oxide nanoparticles (ZnONPs) on cerebellar tissue and clarified the ameliorative role of Quercetin supplementation. Forty adult male albino rats were divided into control group (I), ZnONPs-exposed group (II), and ZnONPs and Quercetin group (III). Oxidative stress biomarkers (MDA & TOS), antioxidant biomarkers (SOD, GSH, GR, and TAC), serum interleukins (IL-1β, IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) were measured. Serum micro-RNA (miRNA): miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-3p expression levels were quantified by real-time quantitative polymerase-chain reaction (RT-QPCR). Cerebellar tissue sections were stained with Hematoxylin & Eosin and Silver stains and examined microscopically. Expression levels of Calbindin D28k, GFAP, and BAX proteins in cerebellar tissue were detected by immunohistochemistry. Quercetin supplementation lowered oxidative stress biomarkers levels and ameliorated the antioxidant parameters that were decreased by ZnONPs. No significant differences in GR activity were detected between the study groups. ZnONPs significantly increased serum IL-1β, IL-6, IL-8, and TNF-α which were improved with Quercetin. Serum miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-p expression levels showed significant increase in ZnONPs group, while no significant difference was observed between Quercetin-treated group and control group. ZnONPs markedly impaired cerebellar tissue structure with decreased levels of calbindin D28k, increased BAX and GFAP expression. Quercetin supplementation ameliorated cerebellar tissue apoptosis, gliosis and improved calbindin levels. In conclusion: Quercetin supplementation ameliorated cerebellar neurotoxicity induced by ZnONPs at cellular and molecular basis by different studied mechanisms.<b>Abbreviations:</b> NPs: Nanoparticles, ROS: reactive oxygen species, ZnONPs: Zinc oxide nanoparticles, AgNPs: silver nanoparticles, BBB: blood-brain barrier, ncRNAs: Non-coding RNAs, miRNA: Micro RNA, DMSO: Dimethyl sulfoxide, LPO: lipid peroxidation, MDA: malondialdehyde, TBA: thiobarbituric acid, TOS: total oxidative status, ELISA: enzyme-linked immunosorbent assay, H<sub>2</sub>O<sub>2</sub>: hydrogen peroxide, SOD: superoxide dismutase, GR: glutathione reductase, TAC: total antioxidant capacity, IL-1: interleukin-1, TNF: tumor necrosis factor alpha, cDNA: complementary DNA, RT-QPCR: Real-time quantitative polymerase-chain reaction, ABC: Avidin biotin complex technique, DAB: 3', 3-diaminobenzidine, SPSS: Statistical Package for Social Sciences, ANOVA: One way analysis of variance, Tukey's HSD: Tukey's Honestly Significant Difference, GFAP: glial fiberillar acitic protein, iNOS: Inducible nitric oxide synthase, NO: nitric oxide, HO-1: heme oxygenase-1, Nrf2: nuclear factor erythroid 2-related factor 2, NF-B: nuclea","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364653/pdf/KTIB_11_2115273.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10398782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Urothelium removal does not impact mucosal activity in response to muscarinic or adrenergic receptor stimulation. 尿路上皮去除不影响粘膜活性响应毒蕈碱或肾上腺素能受体的刺激。
IF 3.1
Tissue Barriers Pub Date : 2023-07-03 DOI: 10.1080/21688370.2022.2099214
Christian Moro, Charlotte Phelps
{"title":"Urothelium removal does not impact mucosal activity in response to muscarinic or adrenergic receptor stimulation.","authors":"Christian Moro,&nbsp;Charlotte Phelps","doi":"10.1080/21688370.2022.2099214","DOIUrl":"https://doi.org/10.1080/21688370.2022.2099214","url":null,"abstract":"<p><p>The inner lining of the urinary bladder (urothelium and lamina propria, or bladder mucosa) has an important role as a tissue barrier between stored urine and the underlying smooth muscle, as well as in the modulation and regulation of bladder contractility. However, the individual influence of the apical urothelial layer on the contractile activity of this tissue is uncertain. The aim of this experiment was to identify the contractile activity of the lamina propria after removal of the urothelium. Several methods were used to mechanically disrupt the urothelium, including dabbing the tissue with a paper towel, longitudinal swipes with a cotton bud, or a longitudinal scrape with the edge of a scalpel. Hematoxylin-eosin staining was utilized to determine the level of removal of the apical urothelial cells. Spontaneous contractile activity was measured in organ baths, and responses to the agonists carbachol and isoprenaline were obtained. Three longitudinal swipes with a cotton bud was found to be the optimal method to remove the majority of the urothelium without damaging the lamina propria. Upon removal of the urothelium, the spontaneous activity of the tissue was unaltered. Similarly, responses to carbachol (1 µM) and isoprenaline (1 µM) were not affected after removal of the urothelium. The urothelium can be effectively removed without damaging the lamina propria. This apical tissue layer is not responsible for mediating the increases to spontaneous phasic activity or tonic contractions of the bladder mucosa (urothelium with lamina propria) when muscarinic or adrenergic receptors are stimulated. This research presents the lamina propria as the important cell layer mediating the overall contractile activity of the bladder wall.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364648/pdf/KTIB_11_2099214.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9869262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Spatial composition and turnover of the main molecules in the adult glomerular basement membrane. 成人肾小球基底膜中主要分子的空间组成和转换。
IF 3.1
Tissue Barriers Pub Date : 2023-07-03 DOI: 10.1080/21688370.2022.2110798
David W Smith, Azin Azadi, Chang-Joon Lee, Bruce S Gardiner
{"title":"Spatial composition and turnover of the main molecules in the adult glomerular basement membrane.","authors":"David W Smith,&nbsp;Azin Azadi,&nbsp;Chang-Joon Lee,&nbsp;Bruce S Gardiner","doi":"10.1080/21688370.2022.2110798","DOIUrl":"https://doi.org/10.1080/21688370.2022.2110798","url":null,"abstract":"<p><p>The glomerular basement membrane (GBM) is an important tissue structure in kidney function. It is the membrane through which filtrate and solutes must pass to reach the nephron tubules. This review focuses on the spatial location of the main extracellular matrix components of the GBM. It also attempts to explain this organization in terms of their synthesis, transport, and loss. The picture that emerges is that the collagen IV and laminin content of GBM are in a very slow dynamic disequilibrium, leading to GBM thickening with age, and in contrast, some heparan sulfate proteoglycans are in a dynamic equilibrium with a very rapid turnover (i.e. half-life measured in ~hours) and flow direction against the flow of filtrate. The highly rapid heparan sulfate turnover may serve several roles, including an unclogging mechanism for the GBM, compressive stiffness of the GBM fiber network, and/or enabling podocycte-endothelial crosstalk against the flow of filtrate.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364650/pdf/KTIB_11_2110798.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mechanisms and modeling of wound repair in the intestinal epithelium. 肠上皮损伤修复的机制和模型。
IF 3.1
Tissue Barriers Pub Date : 2023-04-03 DOI: 10.1080/21688370.2022.2087454
Kasey D Boger, Ana E Sheridan, Amanda L Ziegler, Anthony T Blikslager
{"title":"Mechanisms and modeling of wound repair in the intestinal epithelium.","authors":"Kasey D Boger,&nbsp;Ana E Sheridan,&nbsp;Amanda L Ziegler,&nbsp;Anthony T Blikslager","doi":"10.1080/21688370.2022.2087454","DOIUrl":"https://doi.org/10.1080/21688370.2022.2087454","url":null,"abstract":"<p><p>The intestinal epithelial barrier is susceptible to injury from insults, such as ischemia or infectious disease. The epithelium's ability to repair wounded regions is critical to maintaining barrier integrity. Mechanisms of intestinal epithelial repair can be studied with models that recapitulate the in vivo environment. This review focuses on in vitro injury models and intestinal cell lines utilized in such systems. The formation of artificial wounds in a controlled environment allows for the exploration of reparative physiology in cell lines modeling diverse aspects of intestinal physiology. Specifically, the use of intestinal cell lines, IPEC-J2, Caco-2, T-84, HT-29, and IEC-6, to model intestinal epithelium is discussed. Understanding the unique systems available for creating intestinal injury and the differences in monolayers used for in vitro work is essential for designing studies that properly capture relevant physiology for the study of intestinal wound repair.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161961/pdf/KTIB_11_2087454.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. 饮食-微生物群轴:人类健康和疾病中肠道通透性的关键调节器。
IF 3.6
Tissue Barriers Pub Date : 2023-04-03 Epub Date: 2022-05-21 DOI: 10.1080/21688370.2022.2077069
Raju Lama Tamang, Anthony F Juritsch, Rizwan Ahmad, Jeffrey D Salomon, Punita Dhawan, Amanda E Ramer-Tait, Amar B Singh
{"title":"The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease.","authors":"Raju Lama Tamang, Anthony F Juritsch, Rizwan Ahmad, Jeffrey D Salomon, Punita Dhawan, Amanda E Ramer-Tait, Amar B Singh","doi":"10.1080/21688370.2022.2077069","DOIUrl":"10.1080/21688370.2022.2077069","url":null,"abstract":"<p><p>The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161950/pdf/KTIB_11_2077069.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9689804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of the ACE/Ang II/AT1R pathway, cytokine release, and alteration of tight junctions in COVID-19 pathogenesis. ACE/Ang II/AT1R通路、细胞因子释放和紧密连接改变在COVID-19发病机制中的作用
IF 3.1
Tissue Barriers Pub Date : 2023-04-03 DOI: 10.1080/21688370.2022.2090792
Laith Ashour
{"title":"Roles of the ACE/Ang II/AT1R pathway, cytokine release, and alteration of tight junctions in COVID-19 pathogenesis.","authors":"Laith Ashour","doi":"10.1080/21688370.2022.2090792","DOIUrl":"https://doi.org/10.1080/21688370.2022.2090792","url":null,"abstract":"<p><p>This paper shows how SARS-CoV-2 alters tight junctions (TJs) in human organs. The effect of SARS-CoV-2 on the ACE/Ang II/AT1R pathway and immune cells culminates in the release of numerous pro-inflammatory mediators, leading to the presence of certain symptoms in COVID-19, such as acute lung injury (ALI), pulmonary hypertension, and pulmonary fibrosis. Furthermore, the cytokines released alter different TJs components. The study shows how the irregular release of pro-inflammatory cytokines leads to claudin disruption in various tissues of the body, resulting in different symptoms, such as alveolar fibrosis, pulmonary edema, conjunctivitis, altered fertility in males, gastrointestinal symptoms, Covid toes, and others. SARS-CoV-2 also alters occludin expression in the endothelial and blood-testis barriers (BTB) resulting in edema and altered fertility. Viral disruption of JAM-A leads to activation of the RhoA GTPase, which leads to ALI. Taken together, these results define ACE/Ang II/AT1R pathway receptors and tight junctional components as potential therapeutic targets in COVID-19.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161962/pdf/KTIB_11_2090792.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信