Tissue BarriersPub Date : 2025-03-25DOI: 10.1080/21688370.2025.2482277
Yasutada Akiba, Shin Nishii, Akinori Mizoguchi, Suguru Ito, Jonathan D Kaunitz
{"title":"Lipopolysaccharide transport during long-chain fatty acid exposure is mediated by caveolin-1 dependent endocytosis in murine jejunum.","authors":"Yasutada Akiba, Shin Nishii, Akinori Mizoguchi, Suguru Ito, Jonathan D Kaunitz","doi":"10.1080/21688370.2025.2482277","DOIUrl":"https://doi.org/10.1080/21688370.2025.2482277","url":null,"abstract":"<p><p>The entry of bacterial-derived lipopolysaccharides (LPS) from the intestinal lumen to the circulation induces low-grade systemic inflammation. We have found that LPS is transcellularly transported to the portal vein during luminal long-chain fatty acid (LCFA) exposure via CD36- and lipid raft-mediated pathways in rat jejunum, consistent with the involvement of caveolae-mediated endocytosis. We thus examined LPS transport in wild-type (WT) and caveolin-1 (Cav1) knockout (KO) murine jejunum. FITC-LPS was added to the mucosal bath of Ussing chambered muscle-stripped jejunal mucosa of WT and Cav1KO mice. Serosal appearance of FITC-LPS was measured with or without luminal application of oleic acid (OA, 10 mM) with taurocholic acid (TCA, 0.1 mM), or medium-chain fatty acid (MCFA) sodium caprate (C10, 30 mM). Luminal application of OA/TCA increased FITC-LPS m-to-s transport in WT jejunum, inhibited by the CD36 inhibitor sulfosuccinimidyl oleate or lipid raft inhibitor methyl-β-cyclodextrin, though not by the clathrin inhibitor chlorpromazine or Pitstop2, suggesting that LCFA-induced LPS transport is mediated by caveolae-mediated endocytosis. In contrast, OA/TCA-induced FITC-LPS transport was abolished in Cav1KO jejunum. Nevertheless, luminal C10 increased FITC-LPS transport in both WT and Cav1KO jejuna without transepithelial electrical resistance changes. Chlorpromazine and Pitstop2 inhibited C10-induced FITC-LPS transport, suggesting that C10 enhances transcellular LPS transport via clathrin-mediated endocytosis in the jejunum. These results suggest that LPS transport during LCFA exposure is mediated by Cav1-mediated endocytosis, whereas MCFA-induced LPS transport is via clathrin-mediated endocytosis. Modulation of epithelial endocytosis may be a new therapeutic target for the prevention of dietary lipid -associated endotoxemia, including the metabolic syndrome.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2482277"},"PeriodicalIF":3.6,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-03-18DOI: 10.1080/21688370.2025.2478349
Rianne M Schoon, Werner J van der Meer, Anne-Marieke D van Stalborch, Jaap D van Buul, Stephan Huveneers
{"title":"VE-cadherin RGD motifs are dispensable for cell-cell junctions, endothelial barrier function and monocyte extravasation.","authors":"Rianne M Schoon, Werner J van der Meer, Anne-Marieke D van Stalborch, Jaap D van Buul, Stephan Huveneers","doi":"10.1080/21688370.2025.2478349","DOIUrl":"10.1080/21688370.2025.2478349","url":null,"abstract":"<p><p>VE-cadherin is a key transmembrane protein involved in endothelial cell-cell junctions, playing a crucial role in maintaining vascular integrity and regulating selective leukocyte extravasation into inflamed tissue. The extracellular domain of human VE-cadherin contains two arginine-glycine-aspartate (RGD) motifs, which are known integrin-binding sites within extracellular matrix proteins, particularly for integrins of the β1, β3, and β5 families. In this study, we examined the functional relevance of these RGD motifs by generating VE-cadherin variants in which the RGD sequences were mutated to nonfunctional RGE. Immunofluorescence analysis showed that the VE-cadherin [D238E], VE-cadherin [D301E], and double-mutant VE-cadherin [D238/301E] variants formed stable endothelial cell-cell junctions that were comparable to junctions based on wild-type VE-cadherin. Additionally, electric cell-substrate impedance sensing (ECIS) confirmed that endothelial cells expressing each VE-cadherin RGD>RGE variant maintained efficient barrier function capacity. Moreover, monocyte transmigration assays demonstrated that the RGD>RGE mutations did not affect monocyte-endothelial interactions during transmigration. In summary, our findings indicate that the VE-cadherin RGD motifs are not essential for endothelial junction formation or monocyte transmigration.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2478349"},"PeriodicalIF":3.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143658864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-02-28DOI: 10.1080/21688370.2025.2470482
Saiprasad Gowrikumar, Aria Tarudji, Brandon Z McDonald, Sai Sindhura Balusa, Forrest M Kievit, Punita Dhawan
{"title":"Claudin-1 impairs blood-brain barrier by downregulating endothelial junctional proteins in traumatic brain injury.","authors":"Saiprasad Gowrikumar, Aria Tarudji, Brandon Z McDonald, Sai Sindhura Balusa, Forrest M Kievit, Punita Dhawan","doi":"10.1080/21688370.2025.2470482","DOIUrl":"https://doi.org/10.1080/21688370.2025.2470482","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a leading cause of death and disability in patients. Brain microvasculature endothelial cells form the blood-brain barrier (BBB) which functions to maintain a protective barrier for the brain from the passive entry of systemic solutes. As a result of the cellular disruption caused by TBI, the BBB is compromised. Tight junction disruption in the endothelium of the BBB has been implicated in this response, but the underlying mechanisms remain unresolved. We utilized various <i>in vivo</i> models of severe to mild TBI as well as <i>in vitro</i> exposure of brain endothelial cells (bEND.3) to analyze conditions encountered following TBI to gain mechanistic insight into alterations observed at the BBB. We found that claudin-1 (CLDN1), was significantly increased in the brain endothelium both <i>in vivo</i> and <i>in vitro</i>. The observed increase of CLDN1 expression correlated with down-regulation of claudin-5 (CLDN5), occludin (OCLN), and zonula occludens (ZO-1), thereby altering BBB integrity by decreasing TEER and increasing permeability. Knockdown of CLDN1 in these pathogenic conditions showed stability of the endothelial junctional proteins. A decline in the epigenetic regulator silent information regulator family protein 1 (SIRT1), a member of the NAD+ dependent protein deacetylases, coincided with this upregulation of CLDN1. Indeed, the quenching of oxidative stress through NAC treatment was able to reduce injury-induced upregulation of CLDN1 <i>in vitro</i>. Mechanistically, an SRC-dependent tyrosine phosphorylation of OCLN and ZO-1 in CLDN1-modulated conditions was observed. Our findings will provide new insights into BBB deregulation and new possible treatment opportunities for TBI.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2470482"},"PeriodicalIF":3.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-02-26DOI: 10.1080/21688370.2025.2472091
Bao-Feng Wang, Ying-Ying Wang, Yun-Lan Yi, Ping-Ping Cao
{"title":"A novel approach for lymphatic organoid embedding: eosin pre-staining and agarose pre-embedding.","authors":"Bao-Feng Wang, Ying-Ying Wang, Yun-Lan Yi, Ping-Ping Cao","doi":"10.1080/21688370.2025.2472091","DOIUrl":"https://doi.org/10.1080/21688370.2025.2472091","url":null,"abstract":"<p><p>Adenoid organoids, as the primary immune barrier of the airway, provide valuable models for studying lymphatic tissue function, but their histological processing remains challenging due to their fragile structure and lack of adhesion. Here, we introduce a novel approach that combines eosin pre-staining with agarose pre-embedding to enhance visibility and structural integrity during paraffin embedding. This method simplifies sectioning and improves the quality of hematoxylin and eosin (HE) and immunofluorescence (IF) staining, yielding clear and stable signals. By addressing key limitations in lymphatic organoid processing, this technique provides a reliable solution for histological and IF studies, facilitating future research on adenoid organoids.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2472091"},"PeriodicalIF":3.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143504238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulating nasal barrier function and tissue remodeling in inflammatory diseases: the role of ginseng and its bioactive compounds.","authors":"Giovanna Lucia Piazzetta, Nadia Lobello, Corrado Pelaia, Mariaimmacolata Preianò, Nicola Lombardo, Emanuela Chiarella","doi":"10.1080/21688370.2025.2470477","DOIUrl":"10.1080/21688370.2025.2470477","url":null,"abstract":"<p><p>Ginseng, a well-known herbal supplement, is widely recognized for its pharmacological properties, including anti-inflammatory, antioxidant, and immune-modulatory effects. This review explores the potential therapeutic benefits of ginseng, particularly its active compounds, ginsenosides, in promoting nasal mucosa health. The nasal mucosa plays a crucial role in respiratory defense, acting as a barrier to pathogens and particulate matter, while also orchestrating immune responses. Ginseng's bioactive compounds have shown promise in modulating inflammation, reducing oxidative stress, and enhancing immune functions, which could be beneficial in conditions such as allergic rhinitis, chronic rhinosinusitis, and viral infections. Histological studies highlight the impact of ginseng on nasal mucosal cells, particularly in regulating immune responses and promoting tissue resilience. Research demonstrates that ginseng can reduce inflammation in the nasal passages by inhibiting pro-inflammatory cytokines and pathways like NF-κB, while enhancing the activity of immune cells such as natural killer cells and macrophages. Furthermore, ginseng's antioxidant properties help protect nasal tissue from oxidative damage, which is common in chronic nasal conditions. Although promising, the evidence base is still developing, with many studies limited by small sample sizes and variations in ginseng preparations. Further clinical trials are needed to substantiate ginseng's efficacy, optimal dosage, and delivery methods for treating nasal conditions. This review provides insights into the potential of ginseng as a complementary therapeutic approach for enhancing nasal mucosa health and improving respiratory outcomes.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2470477"},"PeriodicalIF":3.6,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-02-21DOI: 10.1080/21688370.2025.2462357
Wesley S Ercanbrack, Mateo Ramirez, Austin Dungan, Ella Gaul, Sarah J Ercanbrack, Rebecca A Wingert
{"title":"Frataxin deficiency and the pathology of Friedreich's Ataxia across tissues.","authors":"Wesley S Ercanbrack, Mateo Ramirez, Austin Dungan, Ella Gaul, Sarah J Ercanbrack, Rebecca A Wingert","doi":"10.1080/21688370.2025.2462357","DOIUrl":"https://doi.org/10.1080/21688370.2025.2462357","url":null,"abstract":"<p><p>Friedreich's Ataxia (FRDA) is a neurodegenerative disease that affects a variety of different organ systems. The disease is caused by GAA repeat expansions in intron 1 of the <i>Frataxin</i> gene (<i>FXN</i>), which results in a decrease in the expression of the FXN protein. FXN is needed for the biogenesis of iron-sulfur clusters (ISC) which are required by key metabolic processes in the mitochondria. Without ISCs those processes do not occur properly. As a result, reactive oxygen species accumulate, and the mitochondria cease to function. Iron is also thought to accumulate in the cells of certain tissue types. These processes are thought to be intimately related to the pathologies affecting a myriad of tissues in FRDA. Most FRDA patients suffer from loss of motor control, cardiomyopathy, scoliosis, foot deformities, and diabetes. In this review, we discuss the known features of FRDA pathology and the current understanding about the basis of these alterations.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2462357"},"PeriodicalIF":3.6,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-02-13DOI: 10.1080/21688370.2025.2465048
Hannah Murphy-Marshman, Iordanka A Ivanova, Moshmi Bhattacharya, Lina Dagnino
{"title":"β-arrestin 1 and integrin-linked kinase interact in epidermal keratinocytes and regulate cell motility.","authors":"Hannah Murphy-Marshman, Iordanka A Ivanova, Moshmi Bhattacharya, Lina Dagnino","doi":"10.1080/21688370.2025.2465048","DOIUrl":"https://doi.org/10.1080/21688370.2025.2465048","url":null,"abstract":"<p><p>Arrestins and integrin-linked kinase (ILK) are important scaffold proteins that regulate myriad cell functions in metazoans. β-arrestins, first identified as critical components in G-protein-coupled receptor (GPCR) signaling pathways, participate in inflammatory, immunomodulatory and tissue repair processes in GPCR-dependent and -independent manners. ILK is a central mediator of signaling cascades elicited by activation of integrins, regulating cell motility, proliferation, and mechanotransduction. In the epidermis, ILK is essential for maintenance of barrier function, hair follicle development, melanocyte colonization and regeneration after injury. In this tissue, β-arrestin 2 mitigates inflammatory processes and development of allergic dermatitis, which also is associated with loss of epidermal barrier function. However, the functional role of β-arrestin 1 in epidermal cells is poorly understood. We now report that β-arrestin 1 directly binds ILK, forming hitherto unidentified protein complexes in epidermal keratinocytes. In the absence of exogenous GPCR ligand stimulation, β-arrestin 1 and ILK are found throughout the cytoplasm in epidermal keratinocytes, and also co-localize to plasma membrane regions associated with cell protrusions. Inactivation of the genes that encode both β-arrestin 1 and 2 attenuates forward cell migration, whereas expression of ILK together with β-arrestin 1 restores cell motility. The cooperative effect of ILK and β-arrestin 1 in promoting directional cell migration may have important implications for epidermal regeneration and reestablishment of barrier function after injury.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2465048"},"PeriodicalIF":3.6,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-02-08DOI: 10.1080/21688370.2025.2462855
Mohan Liu, Joseph G Charek, Rodolfo D Vicetti Miguel, Thomas L Cherpes
{"title":"Ephrin-Eph signaling: an important regulator of epithelial integrity and barrier function.","authors":"Mohan Liu, Joseph G Charek, Rodolfo D Vicetti Miguel, Thomas L Cherpes","doi":"10.1080/21688370.2025.2462855","DOIUrl":"10.1080/21688370.2025.2462855","url":null,"abstract":"<p><p>Eph receptor-interacting proteins (ephrin) ligands and their erythropoietin-producing human hepatocellular (Eph) receptors elicit bidirectional signals that regulate cell migration, angiogenesis, neuronal plasticity, and other developmental processes in the embryo. In adulthood, ephrin-Eph signaling regulates numerous homeostatic events, including epithelial cell proliferation and differentiation. Epithelial surfaces, including those of skin and vagina, are lined by layers of stratified squamous epithelium (SSE) that protect against mechanical stress and microbial pathogen invasion. Ephrin-Eph signaling is known to promote cutaneous epithelial barrier function by regulating the expression of specialized cell-cell adhesion junctions termed desmosomes, but the role of this signaling system in maintaining epithelial integrity and barrier function in the vagina is less explored. This review summarizes current understanding of ephrin-Eph signaling that regulates desmosome expression and barrier function in the skin and considers evidence that suggests ephrin-Eph signaling similarly regulates these processes in vaginal SSE.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2462855"},"PeriodicalIF":3.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Size-selective permeation-enhancing modulation of the tight junction by receptor-binding domains of <i>Clostridium perfringens</i> enterotoxin and <i>Clostridium perfringens</i> iota-toxin.","authors":"Keisuke Tachibana, Sayaka Sugimura, Shuko Sakimura, Lin Bai, Hiroshi Aoyama, Hiroyuki Takeda, Yuki Niwa, Masahiro Nagahama, Masuo Kondoh","doi":"10.1080/21688370.2025.2459963","DOIUrl":"https://doi.org/10.1080/21688370.2025.2459963","url":null,"abstract":"<p><p>Modulation of claudin-based bicellular tight junction (TJ) and angulin-based tricellular TJ seals has been shown to enhance mucosal permeation of macromolecules, by using the receptor-binding fragments of <i>Clostridium perfringens</i> enterotoxin (C-CPE194, C-CPEmt, and C-CPEm19) and <i>Clostridium perfringens</i> iota-toxin (angubindin-1) as claudin modulators and an angulin modulator, respectively. Here, we compared the activity of these modulators on the TJ in human intestinal Caco-2 cells. All the claudin modulators loosened TJ integrity more potently compared to angubindin-1 with the order of potency being C-CPEm19 > C-CPE194 > C-CPEmt, and results for permeation enhancement were similar. Treatment with C-CPEmt and C-CPE194 at 100 µg/mL for 48 h enhanced the permeation of dextran sized 20 kDa and 70 kDa, respectively. Treatment with C-CPEm19 at 30 µg/mL for 48 h enhanced permeation of dextran with a molecular mass of up to 150 kDa. Furthermore, co-treatment of bicellular TJ modulators, such as C-CPEmt, C-CPE194, and C-CPEm19, and tricellular TJ modulators, such as angubindin-1, showed additive TJ-loosening and permeation-enhancing activities compared with individual treatments; specifically, C-CPEm19 and angubindin-1 co-treatment increased permeation of large molecules (70 kDa and 150 kDa). These findings indicate that TJ modulators may be used as size-selective permeation enhancers.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2459963"},"PeriodicalIF":3.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-31DOI: 10.1080/21688370.2025.2458784
Kimia Basiji, Nesa Kazemifard, Maryam Farmani, Kasra Jahankhani, Shaghayegh Baradaran Ghavami, Amir Fallahnia, Hesameddin Eghlimi, Adil Mir
{"title":"Fistula in Crohn's disease: classification, pathogenesis, and treatment options.","authors":"Kimia Basiji, Nesa Kazemifard, Maryam Farmani, Kasra Jahankhani, Shaghayegh Baradaran Ghavami, Amir Fallahnia, Hesameddin Eghlimi, Adil Mir","doi":"10.1080/21688370.2025.2458784","DOIUrl":"https://doi.org/10.1080/21688370.2025.2458784","url":null,"abstract":"<p><p>Crohn's disease is a form of inflammation that affects the gastrointestinal (GI) tract. It is characterized by persistent inflammation in the gut, which can lead to the formation of abnormal connections called fistulas. These fistulas can occur between the GI tract and the abdominal cavity, adjacent organs, or the skin. The most prevalent type of fistula in Crohn's disease patients is the perianal fistula, which forms between the rectum and the skin near the anus. Although the exact cause of fistula formation is not fully understood, research suggests that factors such as epithelial to mesenchymal transition, matrix metalloproteinase, immune system dysregulation, and microbiota may contribute to their development. There is currently no definitive treatment for fistula closure, but options include surgery, endoscopic procedures, antibiotics, biologic agents, and immunosuppressive drugs. These treatments can be used alone or in combination. However, recurrence is a significant challenge that needs to be addressed in the case of fistula treatment. This review provides an overview of the common types of fistulas, their characteristics, the main factors and mechanisms of fistula formation, and available therapeutic options.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2458784"},"PeriodicalIF":3.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}