Paracrine signaling mediators of vascular endothelial barrier dysfunction in sepsis: implications for therapeutic targeting.

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Shahid Puthiyottil, Tom Skaria
{"title":"Paracrine signaling mediators of vascular endothelial barrier dysfunction in sepsis: implications for therapeutic targeting.","authors":"Shahid Puthiyottil, Tom Skaria","doi":"10.1080/21688370.2025.2503523","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial barrier disruption is a critical determinant of morbidity and mortality in sepsis. Whole blood represents a key source of paracrine signaling molecules inducing vascular endothelial barrier disruption in sepsis. This study analyzes whole-genome transcriptome data from sepsis patients' whole blood available in the NCBI GEO database to identify paracrine mediators of vascular endothelial barrier dysfunction, uncovering novel insights that may guide drug repositioning strategies. This study identifies the regulated expression of paracrine signaling molecules TFPI, MMP9, PROS1, JAG1, S1PR1, and S1PR5 which either disrupt or protect vascular endothelial barrier function in sepsis and could serve as potential targets for repositioning existing drugs. Specifically, TFPI (barrier protective), MMP9 (barrier destructive), PROS1 (barrier protective), and JAG1 (barrier destructive) are upregulated, while S1PR1 (barrier protective) and S1PR5 (barrier protective) are downregulated. Our observations highlight the importance of considering both protective and disruptive mediators in the development of therapeutic strategies to restore endothelial barrier integrity in septic patients. Identifying TFPI, MMP9, PROS1, JAG1, S1PR1, and S1PR5 as druggable paracrine regulators of vascular endothelial barrier function in sepsis could pave the way for precision medicine approaches, enabling personalized treatments that target specific mediators of endothelial barrier disruption to improve patient outcomes in sepsis.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2503523"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2025.2503523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular endothelial barrier disruption is a critical determinant of morbidity and mortality in sepsis. Whole blood represents a key source of paracrine signaling molecules inducing vascular endothelial barrier disruption in sepsis. This study analyzes whole-genome transcriptome data from sepsis patients' whole blood available in the NCBI GEO database to identify paracrine mediators of vascular endothelial barrier dysfunction, uncovering novel insights that may guide drug repositioning strategies. This study identifies the regulated expression of paracrine signaling molecules TFPI, MMP9, PROS1, JAG1, S1PR1, and S1PR5 which either disrupt or protect vascular endothelial barrier function in sepsis and could serve as potential targets for repositioning existing drugs. Specifically, TFPI (barrier protective), MMP9 (barrier destructive), PROS1 (barrier protective), and JAG1 (barrier destructive) are upregulated, while S1PR1 (barrier protective) and S1PR5 (barrier protective) are downregulated. Our observations highlight the importance of considering both protective and disruptive mediators in the development of therapeutic strategies to restore endothelial barrier integrity in septic patients. Identifying TFPI, MMP9, PROS1, JAG1, S1PR1, and S1PR5 as druggable paracrine regulators of vascular endothelial barrier function in sepsis could pave the way for precision medicine approaches, enabling personalized treatments that target specific mediators of endothelial barrier disruption to improve patient outcomes in sepsis.

脓毒症中血管内皮屏障功能障碍的旁分泌信号介质:治疗靶向的意义。
血管内皮屏障破坏是脓毒症发病率和死亡率的关键决定因素。全血是脓毒症中诱导血管内皮屏障破坏的旁分泌信号分子的关键来源。本研究分析了NCBI GEO数据库中脓毒症患者全血的全基因组转录组数据,以确定血管内皮屏障功能障碍的旁分泌介质,揭示了可能指导药物重新定位策略的新见解。本研究发现了旁分泌信号分子TFPI、MMP9、PROS1、JAG1、S1PR1和S1PR5的调控表达,这些信号分子在脓毒症中破坏或保护血管内皮屏障功能,可以作为现有药物重新定位的潜在靶点。其中,TFPI(屏障保护性)、MMP9(屏障破坏性)、PROS1(屏障保护性)和JAG1(屏障破坏性)上调,S1PR1(屏障保护性)和S1PR5(屏障保护性)下调。我们的观察结果强调了在制定恢复脓毒症患者内皮屏障完整性的治疗策略时考虑保护性和破坏性介质的重要性。确定TFPI、MMP9、PROS1、JAG1、S1PR1和S1PR5是脓毒症中血管内皮屏障功能的可药物旁分泌调节因子,可以为精准医学方法铺平道路,使针对内皮屏障破坏的特定介质的个性化治疗能够改善脓毒症患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信