The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment.

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Qi Cao, Wei Zeng, Jingmin Nie, Yongjun Ye, Yanchao Chen
{"title":"The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment.","authors":"Qi Cao, Wei Zeng, Jingmin Nie, Yongjun Ye, Yanchao Chen","doi":"10.1080/21688370.2024.2392361","DOIUrl":null,"url":null,"abstract":"<p><p>Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An <i>in vitro</i> two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2392361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.

apelin-13对HIV-1 tat诱导的巨噬细胞浸润和BBB损伤的保护作用
血脑屏障(BBB)受损及随后的炎症反应是导致人类免疫缺陷病毒(HIV)-1相关神经认知障碍(HAND)的原因之一。Apelin-13是Apelin家族中含量最多的成员,它是血管紧张素受体样1(APJ)的配体。然而,它在 HAND 中的药理功能及其内在机制尚不清楚。在本研究中,我们报告了 HIV-1 Tat 的存在降低了小鼠皮质组织中 Apelin-13 和 APJ 的水平。重要的是,Apelin-13 通过增加紧密连接蛋白 Zonula occludens-1 (ZO-1) 和 occludin 的表达,保护了小鼠的 BBB 完整性,使其免受 HIV-1 Tat 的影响。有趣的是,在受到 HIV-1 刺激后,在大脑皮层中观察到巨噬细胞浸润增加,表现为 CD68 阳性染色升高,而服用 Apelin-13 可减轻这种情况。相应地,Apelin-13 可减少单核细胞趋化蛋白-1(MCP-1)的表达。体外双室和双细胞跨孔试验表明,HIV-1 Tat 挑战可显著促进巨噬细胞迁移,而 Apelin-13 的引入则明显减弱了这种迁移。因此,用 Apelin-13 治疗可恢复 HIV-1 Tat 诱导的闭塞素和 ZO-1 的减少,同时防止人脑微血管内皮细胞(HBMVECs)中 MCP-1 的上调。我们的研究结果表明,Apelin-13 可以减少巨噬细胞对脑组织的浸润,缓解手足口病患者的 BBB 功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信