{"title":"The amazing axolotl: robust kidney regeneration following acute kidney injury.","authors":"Elysa Ng May May, Rebecca A Wingert","doi":"10.1080/21688370.2023.2290946","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of kidney disease from acute and chronic conditions continues to escalate worldwide. Interventions to replace renal function after organ failure remain limited to dialysis or transplantation, as human kidneys exhibit a limited capacity to repair damaged cells or regenerate new ones. In contrast, animals ranging from flies to fishes and even some mammals like the spiny mouse exhibit innate abilities to regenerate their kidney cells following injury. Now, a recent study has illuminated how the Mexican salamander, <i>Ambystoma mexicanum</i>, most commonly known as the axolotl, possesses a kidney with remarkable similarity to humans, which can robustly regenerate following acute chemical damage. These discoveries position the axolotl as a new model that can be used to advance our understanding about the fundamental mechanisms of kidney regeneration.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2290946"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2023.2290946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence of kidney disease from acute and chronic conditions continues to escalate worldwide. Interventions to replace renal function after organ failure remain limited to dialysis or transplantation, as human kidneys exhibit a limited capacity to repair damaged cells or regenerate new ones. In contrast, animals ranging from flies to fishes and even some mammals like the spiny mouse exhibit innate abilities to regenerate their kidney cells following injury. Now, a recent study has illuminated how the Mexican salamander, Ambystoma mexicanum, most commonly known as the axolotl, possesses a kidney with remarkable similarity to humans, which can robustly regenerate following acute chemical damage. These discoveries position the axolotl as a new model that can be used to advance our understanding about the fundamental mechanisms of kidney regeneration.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.