Tissue BarriersPub Date : 2025-01-01Epub Date: 2025-05-12DOI: 10.1080/21688370.2025.2504754
{"title":"Statement of Retraction: The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment. Tissue Barriers.","authors":"","doi":"10.1080/21688370.2025.2504754","DOIUrl":"10.1080/21688370.2025.2504754","url":null,"abstract":"","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2504754"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144025709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-01Epub Date: 2024-02-07DOI: 10.1080/21688370.2024.2314839
Dorrian G Cohen, Rebecca A Wingert
{"title":"One small step for stool, one giant leap for IBD surveillance.","authors":"Dorrian G Cohen, Rebecca A Wingert","doi":"10.1080/21688370.2024.2314839","DOIUrl":"10.1080/21688370.2024.2314839","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBDs) are chronic conditions in which the digestive tract undergoes cycles of relapsing and remitting inflammatory episodes that cause patients to experience severe abdominal pain, bleeding, and diarrhea. Developing noninvasive and cost-effective surveillance methods that can detect an ensuing disease bout proffers an avenue to improve the quality of life for patients with IBD. Now, a recent report describes an ingenious, economical approach using a rationally designed <i>Escherichia coli</i> strain that can dynamically monitor inflammation inside the mammalian gastrointestinal tract. The ability of the engineered probiotic to specifically discern between dormant and activated inflammatory states of the digestive system demonstrates that living biosensors can be used to monitor health status, thus providing a powerful proof of concept that heralds the arrival of a new age of clinical diagnostics for people living with inflammatory diseases of the gut.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2314839"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-01Epub Date: 2024-12-09DOI: 10.1080/21688370.2024.2438974
Saikat Fakir, Khadeja-Tul Kubra, Mohammad Shohel Akhter, Mohammad Afaz Uddin, Md Matiur Rahman Sarker, Agnieszka Siejka, Nektarios Barabutis
{"title":"Unfolded protein response modulates the effects of GHRH antagonists in experimental models of <i>in</i> <i>vivo</i> and <i>in</i> <i>vitro</i> lung injury.","authors":"Saikat Fakir, Khadeja-Tul Kubra, Mohammad Shohel Akhter, Mohammad Afaz Uddin, Md Matiur Rahman Sarker, Agnieszka Siejka, Nektarios Barabutis","doi":"10.1080/21688370.2024.2438974","DOIUrl":"10.1080/21688370.2024.2438974","url":null,"abstract":"<p><p>The development of efficient targeted therapies to ameliorate endothelial disorders is of the utmost need, as evident by the devastating outcomes of the recent pandemic. Recent findings suggest that unfolded protein response (UPR) modulates barrier function. In the current study, we reveal that the aforementioned highly conservative mechanism is involved in the protective effects of growth hormone-releasing hormone antagonists (GHRHAnt) in lung injury, both <i>in vivo</i> and <i>in vitro</i>. In bovine pulmonary artery endothelial cells, UPR suppression counteracted the protective effects of GHRHAnt in lipopolysaccharide (LPS)-induced endothelial hyperpermeability. In mouse lungs, UPR activation enhanced the beneficial effects of GHRHAnt against LPS-induced acute lung injury. Our observations - which are focused on lung endothelial cells and tissues - enhance our knowledge on the mechanisms mediating the barrier function and contribute to the development of novel therapies toward sepsis, direct and indirect lung injury. The effects of UPR modulation on the effects of GHRHAnt in other tissues are unknown, and they are the subject of future investigations.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2438974"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-01Epub Date: 2024-08-26DOI: 10.1080/21688370.2024.2390705
Tunç Akkoç
{"title":"Epithelial barrier dysfunction and microbial dysbiosis: exploring the pathogenesis and therapeutic strategies for Crohn's disease.","authors":"Tunç Akkoç","doi":"10.1080/21688370.2024.2390705","DOIUrl":"10.1080/21688370.2024.2390705","url":null,"abstract":"<p><p>Crohn's disease (CD), a chronic gastrointestinal inflammatory disease, is becoming more widespread worldwide. Crohn's disease is caused by gut microbiota changes, genetics, environmental stresses, and immunological responses. Current treatments attempt to achieve long-term remission and avoid complications, delaying disease progression. Immunosuppressive measures and combination medicines should be started early for high-risk patients. These medicines monitor inflammatory indicators and adjust as needed. The epithelial barrier helps defend against physical, chemical, and immunological threats. When tissues' protective barrier breaks down, the microbiome may reach the layer underneath. Unbalanced microbial populations and inflammation impair healing and adjustment. Inflammatory cells infiltrating sensitive tissues aggravate the damage and inflammation. This approach promotes chronic inflammatory diseases. The epithelial barrier hypothesis states that hereditary and environmental variables cause epithelial tissue inflammation. This review focuses on how epithelial barrier break-down and microbial dysbiosis cause Crohn's disease and current advances in understanding the epithelial barrier, immune system, and microbiome. Additionally, investigate treatments that restore barrier integrity and promote microbial balance. Overall, it stresses the role of epithelial barrier failure and microbial dysbiosis in Crohn's disease development and discusses current advances in understanding the barrier, immunological responses, and microbiota.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2390705"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ulcerative colitis: the healing power of macrophages.","authors":"Nesa Kazemifard, Nafiseh Golestani, Kasra Jahankhani, Maryam Farmani, Shaghayegh Baradaran Ghavami","doi":"10.1080/21688370.2024.2390218","DOIUrl":"10.1080/21688370.2024.2390218","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a chronic and debilitating disorder that falls under the broad category of inflammatory bowel disease (IBD). Therefore, affects the colon and rectum, resulting in inflammation and ulcers in the lining of these organs. Over the years, there has been a significant shift in the management of UC. The focus has moved from achieving symptom-free daily living to attaining mucosal healing. Mucosal healing means completely restoring the colon and rectum's lining, significantly reducing the risk of complications and relapse. Macrophages are a crucial component of the immune system that play a vital role in the regeneration and repair of colonic ulcers. These immune cells are responsible for production of a variety of cytokines and growth factors that facilitate tissue repair. Macrophages are responsible for maintaining a balance between inflammation and healing. When this balance is disrupted, it can lead to chronic inflammation and tissue damage, exacerbating UC symptoms. Thus, this review aims to investigate the contribution of macrophages to mucosal repair and remission maintenance in UC patients.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2390218"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The roles of tight junction protein cingulin in human endometrioid endometrial cancer.","authors":"Arisa Kura, Kimihito Saito, Takumi Konno, Takayuki Kohno, Hiroshi Shimada, Tadahi Okada, Soshi Nishida, Daichi Ishii, Motoki Matsuura, Tsuyoshi Saito, Takashi Kojima","doi":"10.1080/21688370.2024.2361976","DOIUrl":"10.1080/21688370.2024.2361976","url":null,"abstract":"<p><p>The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and β-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with β-estradiol with or without EGF or TGF-β decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2361976"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-01Epub Date: 2024-12-04DOI: 10.1080/21688370.2024.2434764
Mazen M Jamil Al-Obaidi, Muzna Saif Khalfan Al Siyabi, AbdulRahman Muthanna, Mohd Nasir Mohd Desa
{"title":"Understanding the mechanisms of <i>Streptococcus pneumoniae</i> in penetrating the blood-brain barrier: insights into bacterial binding with central nervous system host receptors.","authors":"Mazen M Jamil Al-Obaidi, Muzna Saif Khalfan Al Siyabi, AbdulRahman Muthanna, Mohd Nasir Mohd Desa","doi":"10.1080/21688370.2024.2434764","DOIUrl":"10.1080/21688370.2024.2434764","url":null,"abstract":"<p><p>This review investigates the pathogenic processes through which <i>Streptococcus pneumoniae</i> crosses the blood-brain barrier (BBB) to cause meningitis, with a focus on the interaction with host receptors in the central nervous system (CNS). <i>S. pneumoniae</i> a primary cause of bacterial meningitis, utilizes unique receptor-mediated pathways to infiltrate the BBB. The bacterial interaction with the platelet-activating factor receptor (PAFR) and the polymeric immunoglobulin receptor (pIgR) is looked at in this study. The goal is to understand how this interaction helps the bacterium move across the BBB and cause infection in the CNS. We examine the functions of cellular and molecular participants at the endothelium level, such as cytokines, chemokines, and matrix metalloproteinases (MMP), which have a role in the development of the disease. This study consolidates data from multiple studies, providing a thorough summary of the interactions between <i>S. pneumoniae</i> and the BBB. It also explores potential treatment targets that could reduce the significant illness and death rates associated with pneumococcal meningitis.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2434764"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-01Epub Date: 2024-05-31DOI: 10.1080/21688370.2024.2361197
Jie Chen, Changjie Liu, Yuan Yang, Xue Gong, Huan Qian
{"title":"The stratum corneum barrier: impaired function in relation to associated lipids and proteins.","authors":"Jie Chen, Changjie Liu, Yuan Yang, Xue Gong, Huan Qian","doi":"10.1080/21688370.2024.2361197","DOIUrl":"10.1080/21688370.2024.2361197","url":null,"abstract":"<p><p>The skin is the largest organ of the human body and is widely considered to be the first-line defense of the body, providing essential protection against mechanical, physical, and chemical damage. Keratinocytes are the primary cells of the outer layer of the epidermis, which acts as a mechanical and permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. Here we report that some components of keratinocytes affect the formation and differentiation of the stratum corneum, which is the most specialized layer of the epidermis.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2361197"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tissue BarriersPub Date : 2025-01-01Epub Date: 2024-12-03DOI: 10.1080/21688370.2024.2437220
Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang
{"title":"Mechanical stiffness across skin layers in human: a pilot study.","authors":"Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang","doi":"10.1080/21688370.2024.2437220","DOIUrl":"10.1080/21688370.2024.2437220","url":null,"abstract":"<p><p>Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2437220"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring fatty acid effects in celiac disease: potential therapeutic avenues.","authors":"Sajjad Bakhtiari, Nastaran Asri, Abdolrahim Nikzamir, Shokoufeh Ahmadipour, Mohammad Rostami-Nejad, Carolina Ciacci","doi":"10.1080/21688370.2024.2435552","DOIUrl":"10.1080/21688370.2024.2435552","url":null,"abstract":"<p><strong>Background: </strong>Fatty acids (FAs) play pivotal roles in modulating inflammatory pathways in celiac disease (CD). The present study explored the relationship between serum FAs levels and the expression of both pro- and anti-inflammatory cytokines in adult and pediatric patients with CD.</p><p><strong>Methods: </strong>Serum FA levels in 20 treated CD patients (11 children, 9 adults) and 20 healthy controls (10 children, 10 adults) were analyzed using gas chromatography. Cytokine gene expression (IL-6, TNF-α, IL-10, IL-12, TGFβ, NF-κB) was assessed through quantitative real-time PCR.</p><p><strong>Results: </strong>Myristoleic acid levels decreased in children with CD (<i>p</i> = 0.03) but increased in adults (<i>p</i> = 0.04). Elevated IL-6 mRNA expression was found in both pediatric (<i>p</i> = 0.01) and adult (<i>p</i> = 0.04) groups. TNF-α expression was significantly higher in adults (<i>p</i> = 0.01). In children, IL-10 mRNA levels positively correlated with palmitic acid (<i>p</i> = 0.01, <i>r</i> = 0.73), and TGF-β correlated with myristoleic acid (<i>p</i> = 0.03, <i>r</i> = 0.63). In adults, IL-10 positively correlated with dihomo-gamma-linolenic acid (<i>p</i> = 0.04, <i>r</i> = 0.68) and negatively with linoleic acid (<i>p</i> = 0.02, <i>r</i> = -0.72). These age-related differences may reflect variations in disease duration, metabolic and developmental factors, dietary intake, and gut microbiota composition.</p><p><strong>Conclusion: </strong>These findings suggest that FAs could be therapeutic targets for improving CD management across different age groups.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2435552"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}