人体跨皮肤层的机械刚度:一项初步研究。

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang
{"title":"人体跨皮肤层的机械刚度:一项初步研究。","authors":"Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang","doi":"10.1080/21688370.2024.2437220","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2437220"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical stiffness across skin layers in human: a pilot study.\",\"authors\":\"Wan-Yu Chi, Hao-Wei Huang, Gang-Hui Lee, Criselda Jean G Cruz, Michael W Hughes, Ming-Jer Tang, Shyh-Jou Shieh, Chao-Chun Yang\",\"doi\":\"10.1080/21688370.2024.2437220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2437220\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2437220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2437220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

机械生物学力在皮肤稳态、伤口愈合和再生过程中起着关键作用。组织硬度的变化与各种皮肤疾病有关。使用原子力显微镜,我们分析了六名参与者的不同皮肤层的弹性模量,代表机械刚度,其中包括2名男性和4名女性,年龄在1至70岁之间。弹性模量从高到低排列的皮肤层是表皮、乳头状真皮层、上网状真皮层、下网状真皮层、皮脂腺和皮下组织。本研究有助于进一步了解皮肤的物理特性,为进一步研究皮肤生理或病理提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical stiffness across skin layers in human: a pilot study.

Mechanobiological forces play a pivotal role in the processes of skin homeostasis, wound healing and regeneration. Changes in tissue stiffness are linked to various skin diseases. Using atomic force microscopy, we analyzed the elastic modulus, representing mechanical stiffness, of different skin layers in a group of six participants, including 2 males and 4 females, aged between 1 and 70 years. The skin layers, ranked from highest to lowest elastic modulus, are the epidermis, papillary dermis, upper reticular dermis, lower reticular dermis, sebaceous gland, and subcutaneous tissue. This study contributes to more understanding of the physical properties of the skin, offering a reference for further research on skin physiology or pathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信