The Plant Journal最新文献

筛选
英文 中文
Stress physiology of Moringa oleifera under tropospheric ozone enrichment: An ecotype-specific investigation into growth, nonstructural carbohydrates, and polyphenols. 对流层臭氧富集条件下油辣木的应激生理:对生长、非结构性碳水化合物和多酚的生态型特异性研究。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-30 DOI: 10.1111/tpj.17107
Bárbara Baesso Moura, Yasutomo Hoshika, Cecilia Brunetti, Luana Beatriz Dos Santos Nascimento, Elena Marra, Elena Paoletti, Francesco Ferrini
{"title":"Stress physiology of Moringa oleifera under tropospheric ozone enrichment: An ecotype-specific investigation into growth, nonstructural carbohydrates, and polyphenols.","authors":"Bárbara Baesso Moura, Yasutomo Hoshika, Cecilia Brunetti, Luana Beatriz Dos Santos Nascimento, Elena Marra, Elena Paoletti, Francesco Ferrini","doi":"10.1111/tpj.17107","DOIUrl":"https://doi.org/10.1111/tpj.17107","url":null,"abstract":"<p><p>Ozone (O<sub>3</sub>) is an oxidative pollutant that significantly threatens plant development and ecological dynamics. The present study explores the impact of O<sub>3</sub> on Moringa (Moringa oleifera) ecotypes when exposed to ambient and elevated O<sub>3</sub> levels. Elevated O<sub>3</sub> concentrations resulted in significant reductions in total biomass for all ecotypes. Photosynthetic parameters, including stomatal conductance (g<sub>sto</sub>), CO<sub>2</sub> assimilation (P<sub>n</sub>), and carboxylation efficiency (K), decreased under elevated O<sub>3</sub> in some ecotypes, indicating a detrimental effect on carbon assimilation. Nonstructural carbohydrate (NSC) levels in roots varied among ecotypes, with significant reductions in starch content observed under elevated O<sub>3</sub>, suggesting a potential shift towards soluble sugar accumulation and reallocation for antioxidant defense. Secondary metabolite analysis revealed increased polyphenol production, particularly quercetin derivatives, under elevated O<sub>3</sub> in specific ecotypes, highlighting their role in mitigating oxidative stress. Interestingly, the glucosinolate content also varied, with some ecotypes exhibiting increased levels, suggesting a complex regulatory mechanism in response to O<sub>3</sub> exposure. The study underscores the intrinsic variability among Moringa ecotypes in response to O<sub>3</sub> stress, emphasizing the importance of genetic diversity for adaptation. The findings indicate that Moringa's metabolic plasticity, including shifts in NSC and SM production, plays a crucial role in its defense mechanisms against O<sub>3</sub>-induced oxidative stress. These insights are vital for optimizing the cultivation and utilization of Moringa in diverse environmental conditions, particularly in regions with elevated O<sub>3</sub> levels.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simplified liquid chromatography-mass spectrometry methodology to probe the shikimate and aromatic amino acid biosynthetic pathways in plants. 探索植物莽草酸和芳香族氨基酸生物合成途径的简化液相色谱-质谱方法。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-28 DOI: 10.1111/tpj.17105
Jorge El-Azaz, Hiroshi A Maeda
{"title":"A simplified liquid chromatography-mass spectrometry methodology to probe the shikimate and aromatic amino acid biosynthetic pathways in plants.","authors":"Jorge El-Azaz, Hiroshi A Maeda","doi":"10.1111/tpj.17105","DOIUrl":"https://doi.org/10.1111/tpj.17105","url":null,"abstract":"<p><p>Plants direct substantial amounts of carbon toward the biosynthesis of aromatic amino acids (AAAs), particularly phenylalanine to produce lignin and other phenylpropanoids. Yet, we have a limited understanding of how plants regulate AAA metabolism, partially because of a scarcity of robust analytical methods. Here, we established a simplified workflow for simultaneous quantification of AAAs and their pathway intermediates from plant tissues, based on extraction at two alternative pH and analysis by Zwitterionic hydrophilic interaction liquid chromatography coupled to mass spectrometry. This workflow was then used to analyze metabolic responses to elevated or reduced carbon flow through the shikimate pathway in plants. Increased flow upon expression of a feedback-insensitive isoform of the first shikimate pathway enzyme elevated all AAAs and pathway intermediates, especially arogenate, the last common precursor within the post-chorismate pathway of tyrosine and phenylalanine biosynthesis. Additional overexpression of an arogenate dehydrogenase enzyme increased tyrosine levels and depleted phenylalanine and arogenate pools; however, the upstream shikimate pathway intermediates remained accumulated at high levels. Glyphosate treatment, which restricts carbon flow through the shikimate pathway by inhibiting its penultimate step, led to a predictable accumulation of shikimate and other precursors upstream of its target enzyme but also caused an unexpected accumulation of downstream metabolites, including arogenate. These findings highlight that the shikimate pathway and the downstream post-chorismate AAA pathways function as independently regulated modules in plants. The method developed here paves the way for a deeper understanding of the shikimate and AAA biosynthetic pathways in plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted modulation of pennycress lipid droplet proteins impacts droplet morphology and seed oil content. 靶向调节菥蓂脂滴蛋白可影响脂滴形态和种子含油量。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-28 DOI: 10.1111/tpj.17109
Athanas Guzha, Barsanti Gautam, Damiano Marchiafava, Julius Ver Sagun, Tatiana Garcia, Brice A Jarvis, Allison M Barbaglia-Hurlock, Christopher Johnston, Erich Grotewold, John C Sedbrook, Ana Paula Alonso, Kent D Chapman
{"title":"Targeted modulation of pennycress lipid droplet proteins impacts droplet morphology and seed oil content.","authors":"Athanas Guzha, Barsanti Gautam, Damiano Marchiafava, Julius Ver Sagun, Tatiana Garcia, Brice A Jarvis, Allison M Barbaglia-Hurlock, Christopher Johnston, Erich Grotewold, John C Sedbrook, Ana Paula Alonso, Kent D Chapman","doi":"10.1111/tpj.17109","DOIUrl":"https://doi.org/10.1111/tpj.17109","url":null,"abstract":"<p><p>Lipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the \"model oilseed\" Arabidopsis. Here we identified several key LD biogenesis proteins in the seeds of pennycress, a potential biofuel crop, that were correlated previously with seed oil content and characterized here for their participation in LD formation in transient expression assays and stable transgenics. One pennycress protein, the lipid droplet associated protein-interacting protein (LDIP), was able to functionally complement the Arabidopsis ldip mutant, emphasizing the close conservation of lipid storage among these two Brassicas. Moreover, loss-of-function ldip mutants in pennycress exhibited increased seed oil content without compromising plant growth, raising the possibility that LDIP or other LD biogenesis factors may be suitable targets for improving yields in oilseed crops more broadly.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis DREB26/ERF12 and its close relatives regulate cuticular wax biosynthesis under drought stress condition. 拟南芥 DREB26/ERF12 及其近缘种调控干旱胁迫条件下的角蜡生物合成。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-28 DOI: 10.1111/tpj.17100
Kaoru Urano, Yoshimi Oshima, Toshiki Ishikawa, Takuma Kajino, Shingo Sakamoto, Mayuko Sato, Kiminori Toyooka, Miki Fujita, Maki Kawai-Yamada, Teruaki Taji, Kyonoshin Maruyama, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki
{"title":"Arabidopsis DREB26/ERF12 and its close relatives regulate cuticular wax biosynthesis under drought stress condition.","authors":"Kaoru Urano, Yoshimi Oshima, Toshiki Ishikawa, Takuma Kajino, Shingo Sakamoto, Mayuko Sato, Kiminori Toyooka, Miki Fujita, Maki Kawai-Yamada, Teruaki Taji, Kyonoshin Maruyama, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki","doi":"10.1111/tpj.17100","DOIUrl":"https://doi.org/10.1111/tpj.17100","url":null,"abstract":"<p><p>Land plants have evolved a hydrophobic cuticle on the surface of aerial organs as an adaptation to ensure survival in terrestrial environments. Cuticle is mainly composed of lipids, namely cutin and intracuticular wax, with epicuticular wax deposited on plant surface. The composition and permeability of cuticle have a large influence on its ability to protect plants against drought stress. However, the regulatory mechanisms underlying cuticular wax biosynthesis in response to drought stress have not been fully elucidated. Here, we identified three AP2/ERF transcription factors (DREB26/ERF12, ERF13 and ERF14) involved in the regulation of water permeability of the plant surface. Transmission electron microscopy revealed thicker cuticle on the leaves of DREB26-overexpressing (DREB26OX) plants, and thinner cuticle on the leaves of transgenic plants expressing SRDX repression domain-fused DREB26 (DREB26SR). Genes involved in cuticular wax formation were upregulated in DREB26OX and downregulated in DREB26SR. The levels of very-long chain (VLC) alkanes, which are a major wax component, increased in DREB26OX leaves and decreased in DREB26SR leaves. Under dehydration stress, water loss was reduced in DREB26OX and increased in DREB26SR. The erf12/13/14 triple mutant showed delayed growth, decreased leaf water content, and reduced drought-inducible VLC alkane accumulation. Taken together, our results indicate that the DREB26/ERF12 and its closed family members, ERF13 and ERF14, play an important role in cuticular wax biosynthesis in response to drought stress. The complex transcriptional cascade involved in the regulation of cuticular wax biosynthesis under drought stress conditions is discussed.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of lineage-specific cis-trans regulatory networks related to kiwifruit ripening initiation. 鉴定与猕猴桃成熟启动相关的特定品系顺式-反式调节网络。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-27 DOI: 10.1111/tpj.17093
Eriko Kuwada, Kouki Takeshita, Taiji Kawakatsu, Seiichi Uchida, Takashi Akagi
{"title":"Identification of lineage-specific cis-trans regulatory networks related to kiwifruit ripening initiation.","authors":"Eriko Kuwada, Kouki Takeshita, Taiji Kawakatsu, Seiichi Uchida, Takashi Akagi","doi":"10.1111/tpj.17093","DOIUrl":"https://doi.org/10.1111/tpj.17093","url":null,"abstract":"<p><p>Previous research on the ripening process of many fruit crop varieties typically involved analyses of the conserved genetic factors among species. However, even for seemingly identical ripening processes, the associated gene expression networks often evolved independently, as reflected by the diversity in the interactions between transcription factors (TFs) and the targeted cis-regulatory elements (CREs). In this study, explainable deep learning (DL) frameworks were used to predict expression patterns on the basis of CREs in promoter sequences. We initially screened potential lineage-specific CRE-TF interactions influencing the kiwifruit ripening process, which is triggered by ethylene, similar to the corresponding processes in other climacteric fruit crops. Some novel regulatory relationships affecting ethylene-induced fruit ripening were identified. Specifically, ABI5-like bZIP, G2-like, and MYB81-like TFs were revealed as trans-factors modulating the expression of representative ethylene signaling/biosynthesis-related genes (e.g., ACS1, ERT2, and ERF143). Transient reporter assays and DNA affinity purification sequencing (DAP-Seq) analyses validated these CRE-TF interactions and their regulatory relationships. A comparative analysis with co-expression networking suggested that this DL-based screening can identify regulatory networks independently of co-expression patterns. Our results highlight the utility of an explainable DL approach for identifying novel CRE-TF interactions. These  imply that fruit crop species may have evolved lineage-specific fruit ripening-related cis-trans regulatory networks.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporally resolved growth patterns reveal novel information about the polygenic nature of complex quantitative traits. 时间解析的生长模式揭示了复杂数量性状多基因性质的新信息。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-27 DOI: 10.1111/tpj.17092
Dorothy D Sweet, Sara B Tirado, Julian Cooper, Nathan M Springer, Cory D Hirsch, Candice N Hirsch
{"title":"Temporally resolved growth patterns reveal novel information about the polygenic nature of complex quantitative traits.","authors":"Dorothy D Sweet, Sara B Tirado, Julian Cooper, Nathan M Springer, Cory D Hirsch, Candice N Hirsch","doi":"10.1111/tpj.17092","DOIUrl":"https://doi.org/10.1111/tpj.17092","url":null,"abstract":"<p><p>Plant height can be an indicator of plant health across environments and used to identify superior genotypes. Typically plant height is measured at a single timepoint when plants reach terminal height. Evaluating plant height using unoccupied aerial vehicles allows for measurements throughout the growing season, facilitating a better understanding of plant-environment interactions and the genetic basis of this complex trait. To assess variation throughout development, plant height data was collected from planting until terminal height at anthesis (14 flights 2018, 27 in 2019, 12 in 2020, and 11 in 2021) for a panel of ~500 diverse maize inbred lines. The percent variance explained in plant height throughout the season was significantly explained by genotype (9-48%), year (4-52%), and genotype-by-year interactions (14-36%) to varying extents throughout development. Genome-wide association studies revealed 717 significant single nucleotide polymorphisms associated with plant height and growth rate at different parts of the growing season specific to certain phases of vegetative growth. When plant height growth curves were compared to growth curves estimated from canopy cover, greater Fréchet distance stability was observed in plant height growth curves than for canopy cover. This indicated canopy cover may be more useful for understanding environmental modulation of overall plant growth and plant height better for understanding genotypic modulation of overall plant growth. This study demonstrated that substantial information can be gained from high temporal resolution data to understand how plants differentially interact with the environment and can enhance our understanding of the genetic basis of complex polygenic traits.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transcriptome atlas of zygotic and somatic embryogenesis in Norway spruce. 挪威云杉合子和体细胞胚胎发生的转录组图谱。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-27 DOI: 10.1111/tpj.17087
Katja Stojkovič, Camilla Canovi, Kim-Cuong Le, Iftikhar Ahmad, Ioana Gaboreanu, Sofie Johansson, Nicolas Delhomme, Ulrika Egertsdotter, Nathaniel R Street
{"title":"A transcriptome atlas of zygotic and somatic embryogenesis in Norway spruce.","authors":"Katja Stojkovič, Camilla Canovi, Kim-Cuong Le, Iftikhar Ahmad, Ioana Gaboreanu, Sofie Johansson, Nicolas Delhomme, Ulrika Egertsdotter, Nathaniel R Street","doi":"10.1111/tpj.17087","DOIUrl":"https://doi.org/10.1111/tpj.17087","url":null,"abstract":"<p><p>Somatic embryogenesis (SE) is a powerful model system for studying embryo development and an important method for scaling up availability of elite and climate-adapted genetic material of Norway spruce (Picea abies L. Karst). However, there are several steps during the development of the somatic embryo (Sem) that are suboptimal compared to zygotic embryo (Zem) development. These differences are poorly understood and result in substantial yield losses during plant production, which limits cost-effective large-scale production of SE plants. This study presents a comprehensive data resource profiling gene expression during zygotic and somatic embryo development to support studies aiming to advance understanding of gene regulatory programmes controlling embryo development. Transcriptome expression patterns were analysed during zygotic embryogenesis (ZE) in Norway spruce, including separated samples of the female gametophytes and Zem, and at multiple stages during SE. Expression data from eight developmental stages of SE, starting with pro-embryogenic masses (PEMs) up until germination, revealed extensive modulation of the transcriptome between the early and mid-stage maturing embryos and at the transition of desiccated embryos to germination. Comparative analysis of gene expression changes during ZE and SE identified differences in the pattern of gene expression changes and functional enrichment of these provided insight into the associated biological processes. Orthologs of transcription factors known to regulate embryo development in angiosperms were differentially regulated during Zem and Sem development and in the different zygotic embryo tissues, providing clues to the differences in development observed between Zem and Sem. This resource represents the most comprehensive dataset available for exploring embryo development in conifers.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZmSCE1a positively regulates drought tolerance by enhancing the stability of ZmGCN5. ZmSCE1a 通过增强 ZmGCN5 的稳定性来正向调节耐旱性。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-27 DOI: 10.1111/tpj.17103
Tianyu Feng, Yuxian Wang, Mingcai Zhang, Junhong Zhuang, Yuyi Zhou, Liusheng Duan
{"title":"ZmSCE1a positively regulates drought tolerance by enhancing the stability of ZmGCN5.","authors":"Tianyu Feng, Yuxian Wang, Mingcai Zhang, Junhong Zhuang, Yuyi Zhou, Liusheng Duan","doi":"10.1111/tpj.17103","DOIUrl":"https://doi.org/10.1111/tpj.17103","url":null,"abstract":"<p><p>Drought stress impairs plant growth and poses a serious threat to maize (Zea mays) production and yield. Nevertheless, the elucidation of the molecular basis of drought resistance in maize is still uncertain. In this study, we identified ZmSCE1a, a SUMO E2-conjugating enzyme, as a positive regulator of drought tolerance in maize. Molecular and biochemical assays indicated that E3 SUMO ligase ZmMMS21 acts together with ZmSCE1a to SUMOylate histone acetyltransferase complexes (ZmGCN5-ZmADA2b). SUMOylation of ZmGCN5 enhances its stability through the 26S proteasome pathway. Furthermore, ZmGCN5-overexpressing plants showed drought tolerance performance. It alleviated <math> <semantics> <mrow><msubsup><mi>O</mi> <mn>2</mn> <mo>-</mo></msubsup> </mrow> <annotation>$$ {mathrm{O}}_2^{-} $$</annotation></semantics> </math> accumulation, malondialdehyde content, and ion permeability. What's more, the transcripts of stress-responsive genes and abscisic acid (ABA)-dependent genes were also significantly upregulated in ZmGCN5-overexpressing plants under drought stress. Overexpression of ZmGCN5 enhanced drought-induced ABA production in seedlings. Taken together, our results indicate that ZmSCE1a enhances the stability of ZmGCN5, thereby alleviating drought-induced oxidative damage and enhancing drought stress response in maize.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into physiological roles of flavonoids in plant cold acclimation. 黄酮类化合物在植物耐寒过程中的生理作用。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-25 DOI: 10.1111/tpj.17097
Anastasia Kitashova, Martin Lehmann, Serena Schwenkert, Maximilian Münch, Dario Leister, Thomas Nägele
{"title":"Insights into physiological roles of flavonoids in plant cold acclimation.","authors":"Anastasia Kitashova, Martin Lehmann, Serena Schwenkert, Maximilian Münch, Dario Leister, Thomas Nägele","doi":"10.1111/tpj.17097","DOIUrl":"https://doi.org/10.1111/tpj.17097","url":null,"abstract":"<p><p>Flavonoids represent a diverse group of plant specialised metabolites which are also discussed in the context of dietary health and inflammatory response. Numerous studies have revealed that flavonoids play a central role in plant acclimation to abiotic factors like low temperature or high light, but their structural and functional diversity frequently prevents a detailed mechanistic understanding. Further complexity in analysing flavonoid metabolism arises from the different subcellular compartments which are involved in biosynthesis and storage. In the present study, non-aqueous fractionation of Arabidopsis leaf tissue was combined with metabolomics and proteomics analysis to reveal the effects of flavonoid deficiencies on subcellular metabolism during cold acclimation. During the first 3 days of a 2-week cold acclimation period, flavonoid deficiency was observed to affect pyruvate, citrate and glutamate metabolism which indicated a role in stabilising C/N metabolism and photosynthesis. Also, tetrahydrofolate metabolism was found to be affected, which had significant effects on the proteome of the photorespiratory pathway. In the late stage of cold acclimation, flavonoid deficiency was found to affect protein stability, folding and proteasomal degradation, which resulted in a significant decrease in total protein amounts in both mutants. In summary, these findings suggest that flavonoid metabolism plays different roles in the early and late stages of plant cold acclimation and significantly contributes to establishing a new protein homeostasis in a changing environment.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-chromosome oligo-painting in licorice unveils interspecific chromosomal evolutionary relationships and possible origin of triploid genome species. 甘草的全染色体寡染揭示了种间染色体进化关系和三倍体基因组物种的可能起源。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-25 DOI: 10.1111/tpj.17102
Zhuang Meng, Qian Zheng, Shandang Shi, Wei Wang, Fei Wang, Quanliang Xie, Xifeng Chen, Haitao Shen, Guanghui Xiao, Hongbin Li
{"title":"Whole-chromosome oligo-painting in licorice unveils interspecific chromosomal evolutionary relationships and possible origin of triploid genome species.","authors":"Zhuang Meng, Qian Zheng, Shandang Shi, Wei Wang, Fei Wang, Quanliang Xie, Xifeng Chen, Haitao Shen, Guanghui Xiao, Hongbin Li","doi":"10.1111/tpj.17102","DOIUrl":"https://doi.org/10.1111/tpj.17102","url":null,"abstract":"<p><p>Licorice is one of the most extensively studied medicinal plants in the world, whose roots and rhizomes have long been used as both a sweetener and an essential component in numerous herbal preparations. However, the genus Glycyrrhiza has a complex composition, and the interspecies chromosomal relationships, origin, and evolution are still largely unclear. Here, we develop a set of whole-chromosome painting probes that allowed identification of all eight chromosomes of licorice on same metaphase chromosomes. Comparative chromosome painting analyses in seven different Glycyrrhiza species revealed that the genus Glycyrrhiza maintained extraordinarily conserved chromosomal synteny after about 3-12 million years of divergence. No cytologically visible inter-chromosomal rearrangements were identified in any species. By comparative chromosomal karyotype analyses, we revealed interspecific chromosome evolutionary relationships and dramatic variable chromosomal karyotype after independent divergence and demonstrated that G. prostrate was the most closely related to the ancestral type among the seven Glycyrrhiza species. Furthermore, we also discovered a G. glandulosa seed with distinct triploid-genome for the first time in China, suggesting the existence of a polyploid evolutionary pathway in the genus Glycyrrhiza, which challenges the previous notion that only diploids of licorice existed in nature. This study expands our knowledge of the chromosome evolution of licorice and will lay an important foundation for the genome origin and evolution studies in the genus Glycyrrhiza.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信