Xiangbin Chen, Ying Li, Muhammad Redzuan Bin Jamil, Jolly Madathiparambil Saju, Rajani Sarojam, Nam-Hai Chua
{"title":"水杨酸减少ELF3相分离,抑制拟南芥热形态生长","authors":"Xiangbin Chen, Ying Li, Muhammad Redzuan Bin Jamil, Jolly Madathiparambil Saju, Rajani Sarojam, Nam-Hai Chua","doi":"10.1111/tpj.70335","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in <i>Arabidopsis thaliana</i>. SA levels decrease in Arabidopsis when exposed to warm temperatures (29°C). Seedlings treated with exogenous SA, as well as transgenic plants with elevated SA levels, exhibit significantly reduced thermoresponsive hypocotyl elongation compared with control seedlings. By contrast, SA-deficient mutant seedlings display enhanced elongation. SA significantly decreases warmth-induced expression of <i>PHYTOCHROME-INTERACTING FACTOR 4</i> (<i>PIF4</i>), a central regulator of thermomorphogenesis, and of downstream auxin biosynthesis and signaling genes. Furthermore, the inhibitory effects of SA on thermomorphogenic growth and warmth-induced <i>PIF4</i> expression are largely dependent on <i>EARLY FLOWERING 3</i> (<i>ELF3</i>). SA reduces liquid-liquid phase separation (LLPS) of ELF3 prion-like domain (ELF3-Prd) <i>in vitro</i>, although the underlying mechanism remains to be elucidated. Correspondingly, elevated SA levels in plants decrease ELF3 nuclear speckle formation and enhance ELF3 binding to the <i>PIF4</i> promoter at warm temperatures, whereas reduced SA levels in plants lead to the opposite effect. Collectively, our study uncovers a previously unrecognized role of SA in plant growth adaptation to the changing climate.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salicylic acid reduces ELF3 phase separation and suppresses thermomorphogenic growth in Arabidopsis\",\"authors\":\"Xiangbin Chen, Ying Li, Muhammad Redzuan Bin Jamil, Jolly Madathiparambil Saju, Rajani Sarojam, Nam-Hai Chua\",\"doi\":\"10.1111/tpj.70335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in <i>Arabidopsis thaliana</i>. SA levels decrease in Arabidopsis when exposed to warm temperatures (29°C). Seedlings treated with exogenous SA, as well as transgenic plants with elevated SA levels, exhibit significantly reduced thermoresponsive hypocotyl elongation compared with control seedlings. By contrast, SA-deficient mutant seedlings display enhanced elongation. SA significantly decreases warmth-induced expression of <i>PHYTOCHROME-INTERACTING FACTOR 4</i> (<i>PIF4</i>), a central regulator of thermomorphogenesis, and of downstream auxin biosynthesis and signaling genes. Furthermore, the inhibitory effects of SA on thermomorphogenic growth and warmth-induced <i>PIF4</i> expression are largely dependent on <i>EARLY FLOWERING 3</i> (<i>ELF3</i>). SA reduces liquid-liquid phase separation (LLPS) of ELF3 prion-like domain (ELF3-Prd) <i>in vitro</i>, although the underlying mechanism remains to be elucidated. Correspondingly, elevated SA levels in plants decrease ELF3 nuclear speckle formation and enhance ELF3 binding to the <i>PIF4</i> promoter at warm temperatures, whereas reduced SA levels in plants lead to the opposite effect. Collectively, our study uncovers a previously unrecognized role of SA in plant growth adaptation to the changing climate.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 5\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70335\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70335","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Salicylic acid reduces ELF3 phase separation and suppresses thermomorphogenic growth in Arabidopsis
Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana. SA levels decrease in Arabidopsis when exposed to warm temperatures (29°C). Seedlings treated with exogenous SA, as well as transgenic plants with elevated SA levels, exhibit significantly reduced thermoresponsive hypocotyl elongation compared with control seedlings. By contrast, SA-deficient mutant seedlings display enhanced elongation. SA significantly decreases warmth-induced expression of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a central regulator of thermomorphogenesis, and of downstream auxin biosynthesis and signaling genes. Furthermore, the inhibitory effects of SA on thermomorphogenic growth and warmth-induced PIF4 expression are largely dependent on EARLY FLOWERING 3 (ELF3). SA reduces liquid-liquid phase separation (LLPS) of ELF3 prion-like domain (ELF3-Prd) in vitro, although the underlying mechanism remains to be elucidated. Correspondingly, elevated SA levels in plants decrease ELF3 nuclear speckle formation and enhance ELF3 binding to the PIF4 promoter at warm temperatures, whereas reduced SA levels in plants lead to the opposite effect. Collectively, our study uncovers a previously unrecognized role of SA in plant growth adaptation to the changing climate.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.