{"title":"干旱通过水杨酸介导的ELF3相分离抑制热形态形成","authors":"Ruitian Song, Mande Xue, Huairen Zhang, Xiaoyi Li, Hui Li, Danhua Jiang","doi":"10.1111/tpj.70466","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling. However, this phenomenon has primarily been described under well-watered conditions, whereas in nature, heat often coincides with other environmental challenges, such as drought. How thermomorphogenesis integrates with water shortage conditions, where excess water loss can be detrimental, remains unclear. Here, we demonstrate that restricting water availability and mimicking drought stress with mannitol or PEG inhibit thermomorphogenesis. Mechanistically, both mannitol and PEG treatments reduce high temperature-induced transcriptional activation of <i>PHYTOCHROME INTERACTING FACTOR 4</i> (<i>PIF4</i>), a central regulator of thermomorphogenesis. This suppression is contributed to by the enhanced production of plant phytohormone salicylic acid (SA), which disrupts phase separation and prevents the deactivation of EARLY FLOWERING 3 (ELF3), a repressor of <i>PIF4</i>, at high temperatures, thereby inhibiting <i>PIF4</i> activation. Our study highlights the trade-off between cooling at high temperatures and minimizing excessive water loss under water-limited conditions, providing insights into plant responses to complex environmental challenges.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought inhibits thermomorphogenesis via salicylic acid-mediated suppression of ELF3 phase separation\",\"authors\":\"Ruitian Song, Mande Xue, Huairen Zhang, Xiaoyi Li, Hui Li, Danhua Jiang\",\"doi\":\"10.1111/tpj.70466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling. However, this phenomenon has primarily been described under well-watered conditions, whereas in nature, heat often coincides with other environmental challenges, such as drought. How thermomorphogenesis integrates with water shortage conditions, where excess water loss can be detrimental, remains unclear. Here, we demonstrate that restricting water availability and mimicking drought stress with mannitol or PEG inhibit thermomorphogenesis. Mechanistically, both mannitol and PEG treatments reduce high temperature-induced transcriptional activation of <i>PHYTOCHROME INTERACTING FACTOR 4</i> (<i>PIF4</i>), a central regulator of thermomorphogenesis. This suppression is contributed to by the enhanced production of plant phytohormone salicylic acid (SA), which disrupts phase separation and prevents the deactivation of EARLY FLOWERING 3 (ELF3), a repressor of <i>PIF4</i>, at high temperatures, thereby inhibiting <i>PIF4</i> activation. Our study highlights the trade-off between cooling at high temperatures and minimizing excessive water loss under water-limited conditions, providing insights into plant responses to complex environmental challenges.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 5\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70466\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70466","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Drought inhibits thermomorphogenesis via salicylic acid-mediated suppression of ELF3 phase separation
Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling. However, this phenomenon has primarily been described under well-watered conditions, whereas in nature, heat often coincides with other environmental challenges, such as drought. How thermomorphogenesis integrates with water shortage conditions, where excess water loss can be detrimental, remains unclear. Here, we demonstrate that restricting water availability and mimicking drought stress with mannitol or PEG inhibit thermomorphogenesis. Mechanistically, both mannitol and PEG treatments reduce high temperature-induced transcriptional activation of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a central regulator of thermomorphogenesis. This suppression is contributed to by the enhanced production of plant phytohormone salicylic acid (SA), which disrupts phase separation and prevents the deactivation of EARLY FLOWERING 3 (ELF3), a repressor of PIF4, at high temperatures, thereby inhibiting PIF4 activation. Our study highlights the trade-off between cooling at high temperatures and minimizing excessive water loss under water-limited conditions, providing insights into plant responses to complex environmental challenges.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.