The Plant Journal最新文献

筛选
英文 中文
MdLRR-RLK1-MdATG3 module enhances the resistance of apples to abiotic stress via autophagy. MdLRR-RLK1-MdATG3模块通过自噬增强苹果对非生物胁迫的抗性
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-13 DOI: 10.1111/tpj.17211
Wenjun Chen, Wei Guo, Chao Zhang, Yi Zhao, Yingying Lei, Cui Chen, Ziwen Wei, Hongyan Dai
{"title":"MdLRR-RLK1-MdATG3 module enhances the resistance of apples to abiotic stress via autophagy.","authors":"Wenjun Chen, Wei Guo, Chao Zhang, Yi Zhao, Yingying Lei, Cui Chen, Ziwen Wei, Hongyan Dai","doi":"10.1111/tpj.17211","DOIUrl":"https://doi.org/10.1111/tpj.17211","url":null,"abstract":"<p><p>Apple is an important economic species affected by abiotic stress, such as salt and drought. LRR-RLKs play a key role in plant responses to stress, although their physiological functions under abiotic stress are not yet fully understood. Autophagy is a highly conserved process in eukaryotes, which plays a vital role in drought and salt stress responses. In this study, overexpression of MdLRR-RLK1 in apple promoted plant growth and development and increased salt and drought stress tolerance. MdLRR-RLK1 interacts with MdATG3 in vivo and in vitro, and MdATG3 ubiquitinates and degrades MdLRR-RLK1. Intriguingly, MdLRR-RLK1 and MdATG3 enhance salt and drought tolerance through increasing autophagy. Moreover, MdATG3 interacts with MdATG8F and MdATG8I-like in apple. These findings reveal the interaction between MdLRR-RLK1 and MdATG3, suggesting mechanisms that regulate apple growth and resistance to abiotic stress.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A favorable natural variation in CCD7 from orchardgrass confers enhanced tiller number.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-12 DOI: 10.1111/tpj.17200
Xiaoheng Xu, Yueyang Liang, Guangyan Feng, Shunfeng Li, Zhongfu Yang, Gang Nie, Linkai Huang, Xinquan Zhang
{"title":"A favorable natural variation in CCD7 from orchardgrass confers enhanced tiller number.","authors":"Xiaoheng Xu, Yueyang Liang, Guangyan Feng, Shunfeng Li, Zhongfu Yang, Gang Nie, Linkai Huang, Xinquan Zhang","doi":"10.1111/tpj.17200","DOIUrl":"https://doi.org/10.1111/tpj.17200","url":null,"abstract":"<p><p>Tiller number is a crucial determinant that significantly influences the productivity and reproductive capacity of forage. The regeneration potential, biomass production, and seed yield of perennial forage species are highly reliant on the development of tillering. Strigolactones (SLs) are recently discovered carotenoid-derived phytohormones that play a crucial role in the regulation of tillering in annual crops. However, the modulation of tiller growth in perennial forage by SLs remains insufficiently investigated. In this study, we identified two alleles of the SLs biosynthesis gene, DgCCD7<sup>A</sup> and DgCCD7<sup>D</sup>, which encode CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), from two distinct subspecies of orchardgrass (Dactylis glomerata) exhibiting contrasting tillering phenotype and SLs content. The functionality of the DgCCD7<sup>A</sup> allele derived from high-tillering phenotypic orchardgrass was found to be diminished compared to that of DgCCD7<sup>D</sup> from the low-tillering type in rescuing the increased branching phenotype of CCD7-defective mutants in Arabidopsis and rice (Oryza sativa). Notably, the introduction of DgCCD7<sup>A</sup> in rice resulted in an increase in tiller number without significantly compromising grain yield. Moreover, we demonstrated that the L309P variation in DgCCD7<sup>A</sup> is a rare natural variant exclusively found in orchardgrass. Our findings revealed that DgCCD7<sup>A</sup>, a rare favorable natural variation of CCD7 in orchardgrass, holds significant potential for breeding application in improving the plant architecture of perennial forage and crops.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene family rearrangements and transcriptional priming drive the evolution of vegetative desiccation tolerance in Selaginella.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-12 DOI: 10.1111/tpj.17169
Gerardo Alejo-Jacuinde, Ricardo A Chávez Montes, Cristian D Gutierrez Reyes, Lenin Yong-Villalobos, June Simpson, Luis Herrera-Estrella
{"title":"Gene family rearrangements and transcriptional priming drive the evolution of vegetative desiccation tolerance in Selaginella.","authors":"Gerardo Alejo-Jacuinde, Ricardo A Chávez Montes, Cristian D Gutierrez Reyes, Lenin Yong-Villalobos, June Simpson, Luis Herrera-Estrella","doi":"10.1111/tpj.17169","DOIUrl":"https://doi.org/10.1111/tpj.17169","url":null,"abstract":"<p><p>Extreme dryness is lethal for nearly all plants, excluding the so-called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome-level assemblies and improved genome annotations of two Selaginella species with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister-group comparative genomics integrating multi-omics data. Our findings indicate that Selaginella evolved VDT through the expansion of some stress protection-related gene families and the contraction of senescence-related genes. Comparative analyses revealed that desiccation-tolerant Selaginella species employ a combination of constitutive and inducible protection mechanisms to survive desiccation. We show that transcriptional priming of stress tolerance-related genes and accumulation of flavonoids in unstressed plants are hallmarks of VDT in Selaginella. During water loss, the resurrection Selaginella induces phospholipids and glutathione metabolism, responses that are missing in the desiccation-sensitive species. Additionally, gene regulatory network analyses indicate the suppression of growth processes as a major component of VDT. This study presents novel perspectives on how gene dosage impacts crucial protective mechanisms and the regulation of central processes to survive extreme dehydration.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced sensitivity of TAPscan v4 enables comprehensive analysis of streptophyte transcription factor evolution.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-12 DOI: 10.1111/tpj.17184
Romy Petroll, Deepti Varshney, Saskia Hiltemann, Hermann Finke, Mona Schreiber, Jan de Vries, Stefan A Rensing
{"title":"Enhanced sensitivity of TAPscan v4 enables comprehensive analysis of streptophyte transcription factor evolution.","authors":"Romy Petroll, Deepti Varshney, Saskia Hiltemann, Hermann Finke, Mona Schreiber, Jan de Vries, Stefan A Rensing","doi":"10.1111/tpj.17184","DOIUrl":"https://doi.org/10.1111/tpj.17184","url":null,"abstract":"<p><p>Transcription-associated proteins (TAPs) fulfill multiple functions in regulatory and developmental processes and display lineage-specific evolution. TAPscan is a comprehensive and highly reliable tool for genome-wide TAP annotation via domain profiles. Here, we present TAPscan v4, including an updated web interface (https://tapscan.plantcode.cup.uni-freiburg.de/), which enables an in-depth representation of the distribution of 138 TAP families across 678 species from diverse groups of organisms, with a focus on Archaeplastida (plants in the wide sense). With this release, we also make the underlying \"Genome Zoo\" available, a curated protein data set with scripts and metadata. Eighteen new TAP (sub)families were added as part of the update. Nine of those were gained in the most recent common ancestor of the Streptophyta (comprising streptophyte algae and land plants), or within the streptophyte algae. More than one-third of all detected TAP family gains were identified during the evolution of streptophyte algae, before the emergence of land plants, and are thus likely to have been significant for plant terrestrialization. The TAP complement of the Zygnematophyceae was identified to be the most similar to that of land plants, consistent with the finding that this lineage is sister to land plants. Overall, our data retrace the evolution of streptophyte TAPs, allowing us to pinpoint the regulatory repertoire of the earliest land plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification, characterization, and design of plant genome sequences using deep learning.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-12 DOI: 10.1111/tpj.17190
Zhenye Wang, Hao Yuan, Jianbing Yan, Jianxiao Liu
{"title":"Identification, characterization, and design of plant genome sequences using deep learning.","authors":"Zhenye Wang, Hao Yuan, Jianbing Yan, Jianxiao Liu","doi":"10.1111/tpj.17190","DOIUrl":"https://doi.org/10.1111/tpj.17190","url":null,"abstract":"<p><p>Due to its excellent performance in processing large amounts of data and capturing complex non-linear relationships, deep learning has been widely applied in many fields of plant biology. Here we first review the application of deep learning in analyzing genome sequences to predict gene expression, chromatin interactions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in plants. Then, current motif mining and functional component design and synthesis based on generative adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of protein structure and function prediction, genomic prediction, and large model applications based on deep learning is also discussed. Finally, this work provides prospects for the future development of deep learning in plants with regard to multiple omics data, algorithm optimization, large language models, sequence design, and intelligent breeding.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf angle regulation toward a maize smart canopy.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-11 DOI: 10.1111/tpj.17208
Qinyue Jiang, Yijun Wang
{"title":"Leaf angle regulation toward a maize smart canopy.","authors":"Qinyue Jiang, Yijun Wang","doi":"10.1111/tpj.17208","DOIUrl":"https://doi.org/10.1111/tpj.17208","url":null,"abstract":"<p><p>Dense planting of single-cross hybrids contributes to maize yield increase over the past decades. Leaf angle, an important agronomic trait relevant to planting density, plays a fundamental role in light penetration into the canopy and photosynthetic efficiency. Leaf angle is a key parameter of plant architecture in the concept of smart canopy. Maize smart-canopy-like plant architecture exhibits optimal leaf angle, resulting in erect upper leaves and intermediate or horizontal lower leaves. Leaf angle regulation is a promising way forward in the breeding of varieties with canopy ideotypes. In this review, we first describe the relationship between maize polarity axes and leaf angle formation. Then, we revisit advances in the mutant and quantitative genetics research of maize leaf angle, highlighting the biological implications of transcription factors for maize leaf angle regulation. We underscore that KNOX family is essential for the blade-sheath boundary establishment and brassinosteroid pathway components as well as regulator ZmRAVL1 serve as key hubs of the transcriptional hierarchy governing maize leaf angle formation. We also suggest potential avenues for manipulating maize leaf angles across canopy layers.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytosulfokine downregulates defense-related WRKY transcription factors and attenuates pathogen-associated molecular pattern-triggered immunity
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-11 DOI: 10.1111/tpj.17115
Dian Liu, Joanna Jelenska, Jessica M. Morgan, Jean T. Greenberg
{"title":"Phytosulfokine downregulates defense-related WRKY transcription factors and attenuates pathogen-associated molecular pattern-triggered immunity","authors":"Dian Liu,&nbsp;Joanna Jelenska,&nbsp;Jessica M. Morgan,&nbsp;Jean T. Greenberg","doi":"10.1111/tpj.17115","DOIUrl":"10.1111/tpj.17115","url":null,"abstract":"<p>Phytosulfokine (PSK) is a plant growth-promoting peptide hormone that is perceived by its cell surface receptors PSKR1 and PSKR2 in Arabidopsis. Plants lacking the PSK receptors show phenotypes consistent with PSK signaling repressing some plant defenses. To gain further insight into the PSK signaling mechanism, comprehensive transcriptional profiling of Arabidopsis treated with PSK was performed, and the effects of PSK treatment on plant defense readouts were monitored. Our study indicates that PSK's major effect is to downregulate defense-related genes; it has a more modest effect on the induction of growth-related genes. WRKY transcription factors (TFs) emerged as key regulators of PSK-responsive genes, sharing commonality with a pathogen-associated molecular pattern (PAMP) responses, flagellin 22 (flg22), but exhibiting opposite regulatory directions. These PSK-induced transcriptional changes were accompanied by biochemical and physiological changes that reduced PAMP responses, notably mitogen-activated protein kinase (MPK) phosphorylation (previously implicated in WRKY activation) and the cell wall modification of callose deposition. Comparison with previous studies using other growth stimuli (the sulfated plant peptide containing sulfated tyrosine [PSY] and <i>Pseudomonas simiae</i> strain WCS417) also reveals WRKY TFs' overrepresentations in these pathways, suggesting a possible shared mechanism involving WRKY TFs for plant growth–defense trade-off.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 6","pages":"2367-2384"},"PeriodicalIF":6.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-11 DOI: 10.1111/tpj.17196
Can Baysal, Albert P Kausch, Jon P Cody, Fredy Altpeter, Daniel F Voytas
{"title":"Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery.","authors":"Can Baysal, Albert P Kausch, Jon P Cody, Fredy Altpeter, Daniel F Voytas","doi":"10.1111/tpj.17196","DOIUrl":"https://doi.org/10.1111/tpj.17196","url":null,"abstract":"<p><p>The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel transcription factor CsSNACA2 plays a pivotal role within nitrogen assimilation in tea plants.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-11 DOI: 10.1111/tpj.17198
Deyuan Jiang, Li Xu, Weiwei Wen
{"title":"A novel transcription factor CsSNACA2 plays a pivotal role within nitrogen assimilation in tea plants.","authors":"Deyuan Jiang, Li Xu, Weiwei Wen","doi":"10.1111/tpj.17198","DOIUrl":"https://doi.org/10.1111/tpj.17198","url":null,"abstract":"<p><p>Tea (Camellia sinensis) is a globally renowned economic crop, with organs such as leaves and buds utilized for consumption. As a perennial foliage crop, tea plants have high-nitrogen consumption and demand but exhibit relatively low nitrogen use efficiency. Exploring the genetic factors involved in nitrogen assimilation in tea plants could lead to improvements in both tea yield and quality. Here, we first conducted transcriptome sequencing on two tissues (roots and young leaves) under two different nitrate levels (0.2 and 2.5 mm KNO<sub>3</sub>) and at six time points (0, 15, and 45 min; 2 and 6 h and 2 days). Differential gene expression patterns were observed for several genes that exhibited altered expression at 2 h. Clustering and enrichment analyses, along with co-expression network construction, provided evidence for the crucial involvement of CsSNACA2 in nitrogen assimilation. CsSNACA2 overexpression elicited pronounced phenotypic changes in nitrogen-deficient plants. Furthermore, CsSNACA2 suppressed the expression of CsNR (encoding nitrate reductase) and CsCLCa (encoding a <math> <semantics> <mrow><msubsup><mi>NO</mi> <mn>3</mn> <mo>-</mo></msubsup> </mrow> <annotation>$$ {mathrm{NO}}_3^{-} $$</annotation></semantics> </math> /H<sup>+</sup> exchanger). Moreover, CsSNACA2 served as a downstream target of CsSPL6.1. In addition, we characterized Csi-miR156e and Csi-miR156k, which directly cleave CsSPL6.1. This study identified a transcription factor module participating in nitrogen assimilation in tea plants, providing a genetic foundation for future innovations in tea cultivar improvement. These results broaden our understanding of the genetic mechanisms governing nitrogen assimilation in dicotyledonous plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MdMYB54 reduces disease severity caused by Fusarium solani in apple by modulating cell wall cellulose and pectate lyase-dependent defense.
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-12-11 DOI: 10.1111/tpj.17206
Qianwei Liu, Xiao Chen, Sujuan Li, Qian Wang, Yusong Liu, Zhijun Zhang, Chao Yang, Shuo Xu, Ke Mao, Fengwang Ma, Chao Li
{"title":"MdMYB54 reduces disease severity caused by Fusarium solani in apple by modulating cell wall cellulose and pectate lyase-dependent defense.","authors":"Qianwei Liu, Xiao Chen, Sujuan Li, Qian Wang, Yusong Liu, Zhijun Zhang, Chao Yang, Shuo Xu, Ke Mao, Fengwang Ma, Chao Li","doi":"10.1111/tpj.17206","DOIUrl":"https://doi.org/10.1111/tpj.17206","url":null,"abstract":"<p><p>The plant cell wall is the first barrier against pathogen invasion. Fusarium solani is the primary pathogen responsible for apple replant disease. In this study, we identified an MYB protein, MdMYB54, which interacts with the positive regulator of F. solani resistance, MdERF114, and confers apple-increased tolerance against F. solani. The cellulose synthetase (CESA) gene MdCesA6 and pectin lyase-like (PLL) genes MdPLL8 and MdPLL12 were screened as three potential downstream target genes of MdMYB54 using DAP-seq. The results of electrophoretic mobility shift and yeast one-hybrid assays showed that MdMYB54 directly binds to the promoters of MdCesA6, MdPLL8, and MdPLL12 in vivo and in vitro. Dual-luciferase and β-glucuronidase assays showed that MdMYB54 activates the expression of these genes. The cellulose content and pectin lyase activity of MdMYB54-overexpressed roots were significantly higher than those of wild-type plants under F. solani treatment but were the opposite in MdMYB54-RNAi roots. The deposition of cellulose enhanced the physical barrier of the plant cell wall, whereas the activation of pectin lyase promoted the formation of oligogalacturonides and the production of reactive oxygen species. Overexpression of MdCesA6, MdPLL8, and MdPLL12 in the root system enhanced the tolerance of apple to F. solani. The direct interaction of MdERF114 with MdMYB54 enhanced MdMYB54-mediated cell wall defense response. These results suggest that modifying these candidate genes may provide a strategy for improving the resistance of apple to F. solani.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信