{"title":"At the grass roots: non-destructive root phenotyping using X-ray computed tomography","authors":"Gwendolyn K. Kirschner","doi":"10.1111/tpj.70030","DOIUrl":"https://doi.org/10.1111/tpj.70030","url":null,"abstract":"<p>Plant roots are crucial for accessing water and nutrients and directly impact crop yield. However, because they grow underground in the soil, their phenotyping is very difficult. To allow root visualization, artificial growth systems can be used, in which the plants are grown in a transparent substrate like agar, on filter paper, or in a hydroponic system (Li et al., <span>2022</span>). The downside of these systems is that they only allow phenotyping at early growth stages, and traits observed in artificial systems often do not align with those in soil due to the complex nature of soil, which includes factors like soil compaction, uneven distribution of water and nutrients, and microbiota (Watt et al., <span>2013</span>). Therefore, analyzing root traits under field conditions is crucial for identifying stable quantitative trait loci (QTLs) for agricultural applications.</p><p>Soil coring is commonly used for root phenotyping in the field. For that, a cylinder is inserted into the ground to extract a monolith of soil and the roots within it (Figure 1a) (Böhm, <span>1979</span>). However, this method requires washing the soil off the roots and is therefore labor-intensive. This is particularly challenging in clay soils, such as those in rice paddy fields, where washing the roots is difficult. Additionally, when rice roots are removed from the soil, their structure collapses, making it impossible to determine their 3D structure.</p><p>Shota Teramoto and Yusaku Uga, the authors of the highlighted publication, developed an X-ray computed tomography (CT)-based method to analyze root structure from monolith samples without disturbing the soil core (Teramoto & Uga, <span>2024</span>). Uga's group at the National Agriculture & Food Research Organization in Ibaraki, Japan, focuses on designing and developing climate-resilient crops by optimizing root system architecture to enhance adaptation to environmental stresses. One of their ongoing research projects involves developing advanced root phenotyping techniques. Within this project, they developed a method to visualize rice root systems grown in pots using X-ray CT. Teramoto, a Senior Researcher in the group, believed that applying this technology to rice root systems collected from paddy fields could solve the challenges of the phenotyping method.</p><p>For phenotyping, monolith samples were isolated from rice paddy fields, scanned using X-ray CT and analyzed using a workflow named RSApaddy3D (Figure 1b,c). The authors developed a special 2D kernel filter to isolate root-shaped fragments from the CT scans, optimized to detect small, dot-like fragments within its ring. Roots in soil appear as 3D tubular fragments creating a cross-section with a circular segment of the root in at least one of the <i>x</i>-, <i>y</i>-, or <i>z</i>-axis planar slices. This segment can be detected with the 2D filter. If the ring diameter is larger than the root diameter, using this filter along all three axes and","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Hu, Yu Feng, Pan Li, Min Chen, Zi-Jie Shen, Xiao-Qin Sun, Rui-Sen Lu
{"title":"Haplotype-resolved genome and population genomics provide insights into dioscin biosynthesis and evolutionary history of the medicinal species Dioscorea nipponica","authors":"Ke Hu, Yu Feng, Pan Li, Min Chen, Zi-Jie Shen, Xiao-Qin Sun, Rui-Sen Lu","doi":"10.1111/tpj.17237","DOIUrl":"https://doi.org/10.1111/tpj.17237","url":null,"abstract":"<div>\u0000 \u0000 <p><i>Dioscorea nipponica</i>, a perennial herb widely distributed in the Sino-Japanese Floristic Region, is renowned for its medicinal properties, particularly its ability to produce dioscin. Here, we present a haplotype-resolved genome assembly of the diploid <i>D</i>. <i>nipponica</i>, comprising 511.41 Mb for Haplotype A and 498.29 Mb for Haplotype B, each organized into 10 chromosomes. The two haplotypes exhibited high similarity, with only 2.75% of the allelic genes exhibiting specific expression. Key genes in the dioscin biosynthesis pathway were identified, and expression analysis revealed that the majority (16/21) of genes involved in the first two stages were highly expressed in rhizomes. Notably, significant expansion of the CYP90, CYP94, and UGT73 gene families was observed in dioscin-producing species, highlighting their critical roles in dioscin biosynthesis. Additionally, genome size estimation and population genomic analyses of diverse <i>D. nipponica</i> accessions identified four principal clades in <i>D. nipponica</i>, corresponding to diploid, di-tetra-octoploid, tetraploid, and hexaploid accessions from various geographic regions, with clade A (diploids) further divided into five subclades. Demographic analysis of the diploid <i>D. nipponica</i> revealed a prolonged decline in effective population size from the Pleistocene to the Last Glacial Maximum, with population splits occurring during the mid-to-late Pleistocene. Selective sweep analysis identified key genes, including <i>HD-Zip I</i>, <i>ADH1</i>, <i>SMT1</i>, and <i>CYPs</i> that may contribute to adaptation to high-latitude environments and the geographical variations in dioscin content. Overall, this study enhances our understanding of the genomic architecture, biosynthetic pathways, and evolutionary dynamics of <i>D. nipponica</i>, providing valuable insights into its medicinal potential and evolution.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic dissection of internode length confers improvement for ideal plant architecture in maize","authors":"Haiyang Duan, Jianxin Li, Zhengjie Xue, Lu Yang, Yan Sun, Xiaolong Ju, Jihong Zhang, Guoqiang Xu, Xuehang Xiong, Li Sun, Shuhao Xu, Huiling Xie, Dong Ding, Xuebin Zhang, Xuehai Zhang, Jihua Tang","doi":"10.1111/tpj.17245","DOIUrl":"https://doi.org/10.1111/tpj.17245","url":null,"abstract":"<div>\u0000 \u0000 <p>The optimal plant architecture, characterized by short stature, helps mitigate lodging, enables high-density planting, and facilitates mechanized harvesting. Internode length (IL), a crucial component of plant height in maize, plays a significant role in these processes. However, the genetic mechanisms underlying internode elongation remain poorly understood. In this study, we conducted a genome-wide association study to dissect the genetic architecture of IL in maize. The lengths of five internodes above and below the ear (referred as IL-related traits) were collected across multiple environments, revealing substantial variation. A total of 108 quantitative trait loci (QTL) were associated with 11 IL-related traits, with 17 QTL co-detected by different traits. Notably, three QTL have been selected in maize breeding progress. Three hundred and three genes associated with IL were found to operate through plant hormone signal transduction, receptor activity, and carbon metabolism pathways, influencing internode elongation. <i>ZmIL1</i>, which encodes alcohol dehydrogenase, exhibited a high expression level in internodes during the vegetative stage and has been selected in Chinese modern maize breeding. Additionally, <i>ZmIL2</i> and <i>ZmIL3</i> emerged as other crucial regulators of IL. Importantly, <i>ZmIL1</i> has potential applications in maize varieties in the Huang-Huai-Hai region. This study represents the first comprehensive report on the genetic architecture of nearly all ILs in maize, providing profound insights into internode elongation mechanisms and genetic resources. These findings hold significant implications for dwarf breeding programs aimed at optimizing plant architecture for enhancing agronomic performance.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruhao Chen, Zhen Tu, Tao Yu, Zhaorong Wu, Saiful Islam, Xinxi Hu, Changzheng He, Botao Song, Qiusheng Kong, Bihua Nie
{"title":"DREPP protein StPCaP1 facilitates the cell-to-cell movement of Potato virus Y and Potato virus S by inhibiting callose deposition at plasmodesmata","authors":"Ruhao Chen, Zhen Tu, Tao Yu, Zhaorong Wu, Saiful Islam, Xinxi Hu, Changzheng He, Botao Song, Qiusheng Kong, Bihua Nie","doi":"10.1111/tpj.17239","DOIUrl":"https://doi.org/10.1111/tpj.17239","url":null,"abstract":"<div>\u0000 \u0000 <p>Plant viruses, constrained by their limited genomic coding capacity, rely significantly on host factors for successful infection. Disruption of these essential host factors can confer resistance to viruses, with such factors categorized as susceptibility genes or recessive resistance genes. Recent research has identified developmentally regulated plasma membrane polypeptide (DREPP) proteins as susceptibility factors integral to the cell-to-cell movement of potyviruses. In the present study, we demonstrated that the silencing of <i>StPCaP1</i>, a <i>DREPP</i> gene in potato, confers novel resistance to both <i>Potato virus Y</i> (PVY, <i>Potyvirus</i>) and <i>Potato virus S</i> (PVS, <i>Carlavirus</i>). Interaction and subcellular localization analyses revealed that the movement proteins (MPs) of PVY (P3NPIPO) and PVS (TGB1) interact with StPCaP1, recruiting it to plasmodesmata (PD). Furthermore, transcriptome analysis and experimental validation indicated that compared to wild-type (WT) controls, <i>StPCaP1</i>-silenced lines exhibit significantly increased glucose content and elevated expression levels of several <i>UDP-glucosyltransferases</i> (<i>UGTs</i>), which are potential components of the callose synthesis complex. These findings suggest that StPCaP1 participates in callose deposition, as evidenced by the increased callose deposition at PD and reduced PD permeability observed in <i>StPCaP1</i>-silenced lines. Additionally, we found that <i>StPCaP1</i> expression in <i>Nicotiana benthamiana</i> led to reduced callose deposition at PD and promoted PVY-GFP cell-to-cell movement in <i>NbPCaP1</i>-silenced plants in a concentration-dependent manner, which suggests the changes in callose deposition at PD induced by StPCaP1 relates to viral cell-to-cell movement. This study provides a deeper understanding of DREPP-mediated viral movement and highlights potential targets for developing virus-resistant crops.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengni Ma, Runhui Li, Yajun Li, Wenhao Dai, Junzhong Shang, Yanhong He, Fayun Xiang, Yuanyuan Yang, Jihua Wang, Zifeng Huang, Hong Luo, Jie Zhang, Guogui Ning
{"title":"Anthocyanin biosynthesis and transport synergistically modulated by RcMYB75 and RcGSTFL11 play a pivotal role in the feedforward loop in response to drought stress","authors":"Mengni Ma, Runhui Li, Yajun Li, Wenhao Dai, Junzhong Shang, Yanhong He, Fayun Xiang, Yuanyuan Yang, Jihua Wang, Zifeng Huang, Hong Luo, Jie Zhang, Guogui Ning","doi":"10.1111/tpj.17240","DOIUrl":"https://doi.org/10.1111/tpj.17240","url":null,"abstract":"<div>\u0000 \u0000 <p>Anthocyanins, the important antioxidants and signaling molecules, are natural polyphenolic compounds widely present in plants and essential for plant defense. However, little is known about the mechanisms underlying plant anthocyanin accumulation in relation to drought stress. This study reveals that drought stress induces significant anthocyanin accumulation in <i>Rosa chinensis</i>, alongside an increase in the expression of the MYB transcription factor (TF) gene <i>RcMYB75</i> and the glutathione S-transferase (GST) gene <i>RcGSTFL11</i>. When overexpressed, <i>RcMYB75</i> markedly increases anthocyanin contents in both roses and tobaccos; conversely, reducing its expression significantly lowers anthocyanin contents in rose petals. RcGSTFL11 was confirmed as an anthocyanin transporter and overexpression of <i>RcGSTFL11</i> can restore the anthocyanin-deficient phenotype in the Arabidopsis <i>tt19</i> mutant. Transgenic roses overexpressing <i>RcGSTFL11</i> exhibit enhanced anthocyanin accumulation, while those with downregulated <i>RcGSTFL11</i> have reduced contents. Transcriptomic analysis indicates that <i>RcMYB75</i> upregulates the expression of key genes in the anthocyanin biosynthetic pathway and the anthocyanin transport gene <i>RcGSTFL11.</i> Ultimately, we also found that anthocyanin accumulation in these transgenics further enhances plant resistance to drought stress. Taken together, RcMYB75 and RcGSTFL11 promote the synthesis and transport of anthocyanins and play a key role in the feedforward loop responding to drought stress in roses. This study provides insights into the molecular mechanisms by which MYB TFs contribute to anthocyanin biosynthesis and transport, as well as the adaptive strategies of roses in response to drought stress.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sulin Wen, Xiaowei Cai, Kui Zhou, Yi Min, Chunqiong Shang, Luonan Shen, Lin Deng, Di Liu, Guang Qiao, Xiaohui Shen
{"title":"Metabolome and comparative genome provide insights into secondary metabolites generation of a rare karst-growing Rhododendron in vitro culture","authors":"Sulin Wen, Xiaowei Cai, Kui Zhou, Yi Min, Chunqiong Shang, Luonan Shen, Lin Deng, Di Liu, Guang Qiao, Xiaohui Shen","doi":"10.1111/tpj.17235","DOIUrl":"https://doi.org/10.1111/tpj.17235","url":null,"abstract":"<div>\u0000 \u0000 <p><i>Rhododendron</i> species have the potential to be rich in secondary metabolites with pharmaceutical or industrial value. However, there is a lack of comprehensive metabolome studies at the genome level, particularly for unique and rare species like <i>Rhododendron bailiense</i>, which exclusively grows in karst environments in Guizhou, southwest China. Recently, genome assembly data for this species was available. In this study, nontargeted metabolomics was employed to investigate the secondary metabolites profile of <i>R. bailiense</i> callus. The callus of <i>R. bailiense</i> was induced using 0.2 mg L<sup>−1</sup> TDZ (Thidiazuron) + 0.1 mg L<sup>−1</sup> IBA (3-Indole butyric acid). A comparison between light-treated calli and dark-cultured calli revealed differential accumulation of metabolites, particularly in flavonoids, terpenoids, coumarins, and hydroxycinnamic acids, known for their beneficial effects such as antioxidant, anticancer, and anti-inflammatory properties. Proanthocyanidins, with various health-promoting effects, were found to accumulate significantly in dark-cultured calli. Light conditions promoted diterpene and triterpene products, whereas darkness favored sesquiterpene products. Additionally, the study demonstrated the potential of utilizing <i>Agrobacterium</i> transformation technology on callus suspension cells to enhance secondary metabolite production. Comparison with the genome of <i>Rhododendron molle</i> revealed that the <i>R. bailiense</i> genome exhibited active ‘glycosyltransferase activity,’ possessed a higher number of copies of monoterpene and sesquiterpene terpene synthases, and contained high copies of specific cytochrome P450 members (CYP71, CYP76, CYP79, CYP82, CYP736). This study offers valuable insights and potential strategies for the biosynthesis and production of <i>Rhododendron</i> secondary metabolites with pharmaceutical or industrial significance.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Posttranslational regulation of plant membrane transporters","authors":"María Niño-González, Paula Duque","doi":"10.1111/tpj.17262","DOIUrl":"https://doi.org/10.1111/tpj.17262","url":null,"abstract":"<div>\u0000 \u0000 <p>The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"YGL9 mediates LHC assembly by regulating LHCPs transport and chlorophyll synthesis in rice","authors":"Tianquan Zhang, Wenwen Xiao, Zhongwei Wang, Jichao Zhang, Wenqiang Shen, Ranran Tu, Ruhui Wu, Kai Zhou, Xianchun Sang, Yinghua Ling, Guanghua He, Ting Zhang","doi":"10.1111/tpj.17256","DOIUrl":"https://doi.org/10.1111/tpj.17256","url":null,"abstract":"<div>\u0000 \u0000 <p>LHC assembly is a fundamental process in forming a peripheral antenna system, which has a significant impact on photosynthesis. However, the molecular mechanism of the LHC assembly still needs to be further investigated in monocotyledonous plants. Here, we identified a bifunctional protein YGL9 in rice, a homolog of cpSRP43 in <i>Arabidopsis</i>, mediates LHC assembly by simultaneously regulating LHCPs transport and chlorophyll synthesis. Mutation of <i>YGL9</i> exhibits a yellow-green leaf phenotype, with reduced LHCPs contents, impaired photosystem activity and reduced chlorophyll content. YGL9 interacts with cpSRP54 forming the cpSRP complex that transport LHCPs, and YGL9 also interacts with and stabilizes OsGUN4, which is an activator of MgCh and participates in the regulation of chlorophyll synthesis, to synergistically participate in chlorophyll synthesis. Further, genetic evidence demonstrates that YGL9 functions in the same pathway as cpSRP54 and OsGUN4 to regulate LHCPs transport and chlorophyll synthesis. Thus, our study reveals a cross-relationship between LHCPs transport and chlorophyll synthesis, and provides new insights into the LHC assembly process in monocotyledonous plants.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum","authors":"Xiaomeng Zhang, Xinquan Tian, Junyu Luo, Xiaoyang Wang, Shoupu He, Gaofei Sun, Ruidan Dong, Panhong Dai, Xiao Wang, Zhaoe Pan, Baojun Chen, Daowu Hu, Liru Wang, Baoyin Pang, Aishuang Xing, Guoyong Fu, Baoquan Wang, Jinjie Cui, Lei Ma, Xiongming Du","doi":"10.1111/tpj.17248","DOIUrl":"https://doi.org/10.1111/tpj.17248","url":null,"abstract":"<div>\u0000 \u0000 <p>Phloridzin has various functions, including antioxidant properties and the treatment of diabetes, and has long been used in pharmaceutical and physiological research. The glycosylation of phloretin is a key step in the biosynthesis of phloridzin. In this study, a genome-wide association study (GWAS) based on phloridzin content was applied, and the key gene <i>GhUGT88F3</i> for phloridzin-specific biosynthesis was identified in cotton. A single-base deletion in <i>GhUGT88F3</i> in haplotype I caused a frameshift mutation, leading to premature translation termination and a significant reduction in phloridzin content. Molecular docking revealed important amino acid residues for GhUGT88F3's UDP-glucose transfer activity. Additionally, the transcription factor <i>GhMYB330</i> was found to positively regulate <i>GhUGT88F3</i> expression through population transcriptome analysis and LUC experiment. Moreover, phloridzin content was significantly elevated in both <i>GhUGT88F3</i> and <i>GhMYB330</i> overexpression transgenic plants. This study expands the diversity of UDP-glucosyltransferases in plants and offers a potential strategy for the sustainable production of bioactive compounds with therapeutic potential.</p>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Trotta, Sanna Gunell, Azfar Ali Bajwa, Virpi Paakkarinen, Hiroaki Fujii, Eva-Mari Aro
{"title":"Defining the heterogeneous composition of Arabidopsis thylakoid membrane","authors":"Andrea Trotta, Sanna Gunell, Azfar Ali Bajwa, Virpi Paakkarinen, Hiroaki Fujii, Eva-Mari Aro","doi":"10.1111/tpj.17259","DOIUrl":"https://doi.org/10.1111/tpj.17259","url":null,"abstract":"<p>Thylakoid membrane (TM) of land plants is organized into an appressed domain (grana), enriched in photosystem (PS) II and a non-appressed domain (stroma lamellae) enriched in PSI. This ultrastructure controls the exciton spillover from PSII to PSI. The bulky machinery required for the biogenesis and repair of TM protein complexes is located in the non-appressed membranes. Thus, the connecting domain (CD) between grana and stroma lamellae is the key player in both the structural and functional integrity of the photosynthetic machinery. In addition, both the grana domain and the stroma lamellae are highly curved at their edges due to the action of the CURVATURE1 (CURT1) proteins, forming a domain distinct from the CD, called the curvature. Here we elucidate the biochemical properties and proteome composition of different thylakoid domains. To this end, the TM of <i>Arabidopsis thaliana</i> (Arabidopsis), isolated both in the natural stacked configuration and in an artificially unstacked configuration to induce a homogeneous protein composition, was solubilized and fractionated, using the mild detergent digitonin (DIG). Using mass spectrometry-based proteomics, we characterize composition, distribution and interaction of proteins involved in TM function in grana, CD and stroma lamellae domains. We find that a subset of thylakoid protein complexes are readily solubilized into small vesicles by DIG and accumulate in a loose pellet (LP) together with CURT1. By combining an extensive biochemical and proteome characterization of the TM fractions we provide an optimized protocol and proteome maps that can be used as a basis for experimental design in photosynthesis research.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}