Irene I. Ikiriko, Ashley N. Hostetler, Jonathan W. Reneau, Alyssa K. Betts, Erin E. Sparks
{"title":"A biphasic trajectory for maize stalk mechanics shaped by genetic, environmental, and biotic factors","authors":"Irene I. Ikiriko, Ashley N. Hostetler, Jonathan W. Reneau, Alyssa K. Betts, Erin E. Sparks","doi":"10.1111/tpj.70342","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Stalk mechanical properties impact plant stability and interactions with pathogenic microorganisms. The evaluation of stalk mechanics has focused primarily on the end-of-season outcomes and defined differences among inbred and hybrid maize genotypes. However, there is a gap in understanding how these different end-of-season outcomes are achieved. This study measured stalk flexural stiffness in maize inbred genotypes across multiple environments and in maize commercial hybrid genotypes under different disease states. Under all conditions, stalk flexural stiffness followed a biphasic trajectory, characterized by a linear increase phase and a sustained phase. Within a genotype, the environment or disease state altered the rate of increase in the linear phase but did not impact the timing of transition to the sustained phase. Whereas between genotypes, the timing of transition between phases varied. Destructive 3-point bend tests of inbred stalks showed that the trajectory of stalk mechanics is defined by the bending modulus, not the geometry. Together, these results define a biphasic trajectory of maize stalk mechanics that can be modulated by internal and external factors. This work provides a foundation for breeding programs to make informed decisions when selecting for optimized stalk mechanical trajectories, which are necessary for enhancing resilience to environmental stresses.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70342","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stalk mechanical properties impact plant stability and interactions with pathogenic microorganisms. The evaluation of stalk mechanics has focused primarily on the end-of-season outcomes and defined differences among inbred and hybrid maize genotypes. However, there is a gap in understanding how these different end-of-season outcomes are achieved. This study measured stalk flexural stiffness in maize inbred genotypes across multiple environments and in maize commercial hybrid genotypes under different disease states. Under all conditions, stalk flexural stiffness followed a biphasic trajectory, characterized by a linear increase phase and a sustained phase. Within a genotype, the environment or disease state altered the rate of increase in the linear phase but did not impact the timing of transition to the sustained phase. Whereas between genotypes, the timing of transition between phases varied. Destructive 3-point bend tests of inbred stalks showed that the trajectory of stalk mechanics is defined by the bending modulus, not the geometry. Together, these results define a biphasic trajectory of maize stalk mechanics that can be modulated by internal and external factors. This work provides a foundation for breeding programs to make informed decisions when selecting for optimized stalk mechanical trajectories, which are necessary for enhancing resilience to environmental stresses.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.