Chuanhui Du, Wenjie Sun, Qingwei Song, Kaijing Zuo
{"title":"GhDOFD45 promotes sucrose accumulation in cotton seeds by transcriptionally activating GhSWEET10 expression.","authors":"Chuanhui Du, Wenjie Sun, Qingwei Song, Kaijing Zuo","doi":"10.1111/tpj.17123","DOIUrl":"https://doi.org/10.1111/tpj.17123","url":null,"abstract":"<p><p>Cotton seed development and fiber elongation are the inseparable and overlapped development processes requiring the continuous supply of sucrose as the direct carbon source. However, little is known about the molecular mechanism of how sucrose is transported from the source tissues (leaves) into growing cotton seeds. Here, we identify the function of a sucrose transporter gene, Sugars Will Eventually be Exported Transporter 10, GhSWEET10 in cotton seed development. GhSWEET10 encodes a functional sucrose transporter, predominantly expressing in the funiculus, inner seedcoat, and endosperm during fiber elongation. GhSWEET10 RNAi plants (GhSWEET10i) accumulated less sucrose and glucose in growing seeds and that led to shorter fibers and smaller seeds, whereas GhSWEET10 overexpressed plants (GhSWEET10OE) had bigger seeds and longer fibers with more sugar accumulation during fiber elongation. GhSWEET10 gene is transcriptionally controlled by the transcription factor GhDOFD45. GhDOFD45 knockout plants (GhDOFD45-KO) possessed the phenotypes of smaller seeds and shorter fibers like those of GhSWEET10i plants. Furthermore, GhSWEET10 mainly exports the sucrose from the funiculus into developing seeds according to the mimic-analysis of sucrose transporting. Collectively, all these findings show that GhDOFD45 positively regulates GhSWEET10 expression to mainly transport sucrose from leaves into developing cotton seeds. Our findings also imply that the sucrose transport into enlarging seeds benefits fiber development, and thus GhSWEET10 can be selected as a target of breeding novel cotton varieties with larger and more vigorous seeds.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Menghan Huang, Yang Liu, Qianwen Bian, Wenjing Zhao, Juan Zhao, Qingpo Liu
{"title":"OsbHLH6, a basic helix-loop-helix transcription factor, confers arsenic tolerance and root-to-shoot translocation in rice.","authors":"Menghan Huang, Yang Liu, Qianwen Bian, Wenjing Zhao, Juan Zhao, Qingpo Liu","doi":"10.1111/tpj.17124","DOIUrl":"10.1111/tpj.17124","url":null,"abstract":"<p><p>Arsenic (As) is extremely toxic to plants, posing a serious concern for food safety. Identification of genes responsive to As is significative for figuring out this issue. Here, we identified a bHLH transcription factor OsbHLH6 that was involved in mediating the processes of As tolerance, uptake, and root-to-shoot translocation in rice. The expression of OsbHLH6 gene was strongly induced after 3 and 48 h of arsenite [As(III)] treatment. The OsbHLH6-overexpressed transgenic rice (OE-OsbHLH6) was sensitive to, while the knockout mutant of OsbHLH6 gene (Osbhlh6) was tolerant to As(III) stress by affecting the contents of reactive oxygen species (ROS) and non-protein thiols (NPT), etc. Knockout of OsbHLH6 gene increased significantly the As concentration in roots, but decreased extensively As accumulation in shoots, compared to that in OE-OsbHLH6 and WT plants. The transcripts of phytochelatins (PCs) synthetase encoding genes OsPCS1 and OsPCS2, as well as As(III) transporter encoding genes OsLsi1 and OsABCC1 were greatly abundant in Osbhlh6 mutants than in OE-OsbHLH6 and WT plants under As(III) stress. In contrast, the expression of OsLsi2 gene was extensively suppressed by As(III) in Osbhlh6 mutants. OsbHLH6 acted as a transcriptional activator to bind directly to the promoter and regulate the expression of OsPrx2 gene that encodes a peroxidase precursor. Moreover, overexpression of OsbHLH6 gene resulted in significant change of expression of amounts of abiotic stress-related genes, which might partially contribute to the As sensitivity of OE-OsbHLH6 plants. These findings may broaden our understanding of the molecular mechanism of OsbHLH6-mediated As response in rice and provide novel useful genes for rice As stress-resistant breeding.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maïté Leschevin, Brigitte Ksas, Raymonde Baltenweck, Philippe Hugueney, Stefano Caffarri, Michel Havaux
{"title":"Photosystem rearrangements, photosynthetic efficiency, and plant growth in far red-enriched light.","authors":"Maïté Leschevin, Brigitte Ksas, Raymonde Baltenweck, Philippe Hugueney, Stefano Caffarri, Michel Havaux","doi":"10.1111/tpj.17127","DOIUrl":"10.1111/tpj.17127","url":null,"abstract":"<p><p>Arabidopsis plants were grown in white light (400-700 nm) or in white light supplemented with far-red (FR) light peaking at 730 nm. FR-enriched light induced the typical shade avoidance syndrome characterized by enhanced length of seedling hypocotyl and leaf petiole. FR supplementation also caused a noticeable decrease in the carotenoid and chlorophyll content that was attributable to a block of pigment accumulation during plant development. The carotenoid decrease resulted from a downregulation of their biosynthesis pathway rather than carotenoid degradation. The losses of photosynthetic pigments are part of structural and functional rearrangements of the photosynthetic apparatus. The plastoquinone pool was chronically more oxidized in plants acclimated to white + FR light compared to white light-grown plants. Growth in FR-enriched light was associated with a higher photochemical efficiency of PSII compared to growth in white light and with a substantial increase in root and shoot biomass production. Light distribution between the photosystems was modified in favor of PSII by an increase in the PSII/PSI ratio and an inhibition of state transitions. Neither LHCII abundance nor nonphotochemical energy dissipation in the PSII chlorophyll antennae were modified significantly by the addition of FR light. A PSI supercomplex, not previously observed in Arabidopsis, was specifically found in plants grown in FR-enriched light. This large PSI complex contains a supplementary Lhca1-4 dimer, leading to a total of 6 LHCI antennae instead of 4 in the canonical PSI. Through those photosystem rearrangements and the synergistic interaction with white light, FR light is photosynthetically active and can boost photosynthesis and plant growth.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tomato MADS-RIN regulates GAME5 expression to promote non-bitter glycoalkaloid biosynthesis in fruit.","authors":"Yinhuan Xie, Yaping Xu, Huimin Jia, Ke Wang, Siyu Chen, Ting Ma, Yuanwei Deng, Zhaobo Lang, Qingfeng Niu","doi":"10.1111/tpj.17125","DOIUrl":"https://doi.org/10.1111/tpj.17125","url":null,"abstract":"<p><p>A well-known defense-associated steroidal glycoalkaloid (SGA) metabolic shift eliminates the bitterness and toxicity of ripe tomato fruits. This study was conducted to clarify the effects of MADS-RIN (RIN) and its cofactors on SGA metabolism in tomato fruits. Using a CRISPR/Cas9-based gene-editing system, we mutated RIN and two cofactor genes (FUL1 and FUL2). The observed changes to fruit color and size in the mutants reflected the overlapping and distinct effects of RIN, FUL1, and FUL2 on fruit ripening. According to a UPLC-MS/MS analysis, the RIN and cofactor mutants had decreased levels of the relatively non-toxic metabolite esculeoside A, but they accumulated toxic SGA pathway intermediates, suggesting RIN and its cofactors are directly involved in esculeoside A biosynthesis. Transcriptome and qPCR analyses detected the downregulated expression of GAME5, which encodes a key enzyme mediating esculeoside A biosynthesis. ChIP-seq and ChIP-qPCR analyses confirmed GAME5 is targeted by RIN. RIN was observed to activate GAME5 transcription by binding to two non-canonical CArG-boxes in the GAME5 promoter. Additionally, RIN promotes SGA metabolism independently of ethylene. Collectively, these findings enhance our understanding of the molecular mechanism governing tomato fruit ripening and SGA biosynthesis. Furthermore, they may be useful for improving tomato fruit quality and safety.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Xu, Tai-Fei Yu, Ji-Tong Wei, Xiao-Fei Ma, Yong-Wei Liu, Jin-Peng Zhang, Lei Zheng, Ze-Hao Hou, Jun Chen, Yong-Bin Zhou, Ming Chen, Jian Ma, Yun-Feng Jiang, Hu-Tai Ji, Li-Hui Li, You-Zhi Ma, Zhi-An Zhang, Zhao-Shi Xu
{"title":"TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat.","authors":"Xing Xu, Tai-Fei Yu, Ji-Tong Wei, Xiao-Fei Ma, Yong-Wei Liu, Jin-Peng Zhang, Lei Zheng, Ze-Hao Hou, Jun Chen, Yong-Bin Zhou, Ming Chen, Jian Ma, Yun-Feng Jiang, Hu-Tai Ji, Li-Hui Li, You-Zhi Ma, Zhi-An Zhang, Zhao-Shi Xu","doi":"10.1111/tpj.17079","DOIUrl":"https://doi.org/10.1111/tpj.17079","url":null,"abstract":"<p><p>Wheat growth process has been experiencing severe challenges arising from the adverse environment. Notably, the incidence of Fusarium crown rot (FCR), a severe soil-borne disease caused by Fusarium pseudograminearum (Fp), has significantly intensified in various wheat-growing regions, resulting in a decline in grain yield. However, the identification of wheat varieties and the exploration of effective gene resources resistant to FCR have not yet been accomplished. Here, we screened and identified the tryptophan metabolism pathway to participate in wheat resistance to FCR by correlation analysis between transcriptome and metabolome, and found that indole-3-acetaldehyde (IAAld) and melatonin, two key metabolites in the tryptophan metabolic pathway, were significantly accumulated in Fp-induced wheat stem bases. Interestingly, exogenous application of these two metabolites could significantly enhance wheat resistance against Fp. Additionally, we observed that the activity of TaALDHase, a crucial enzyme responsible for catalyzing IAAld to produce indole-3-acetic acid (IAA), was inhibited. Conversely, the activity of TaMTase, a rate-limiting involved in melatonin biosynthesis, was enhanced in the Fp-induced wheat transcriptome. Further analysis showed that TaWRKY24 could regulate IAA and melatonin biosynthesis by inhibiting the expression of TaALDHase and enhancing the transcription of TaMTase, respectively. Silencing of TaALDHase could significantly increase wheat resistance to FCR. However, interference with TaWRKY24 or TaMTase could decrease wheat resistance to FCR. Collectively, our findings demonstrate the crucial role of the tryptophan metabolism pathway in conferring resistance against FCR in wheat, thereby expanding its repertoire of biological functions within the plant system.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RETRACTION: Genotypic and phenotypic characterization of a large, diverse population of maize near-isogenic lines","authors":"","doi":"10.1111/tpj.17078","DOIUrl":"10.1111/tpj.17078","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p><b>RETRACTION:</b> L. Morales, A. C. Repka, K. L. Swarts, W. C. Stafstrom, Y. He, S. M. Sermons, Q. Yang, L. O. Lopez-Zuniga, E. Rucker, W. E. Thomason, R. J. Nelson, P. J. Balint-Kurti. “Genotypic and phenotypic characterization of a large, diverse population of maize near-isogenic lines,” <i>The Plant Journal</i> 103, no. 3 (2020): 1246–1255. https://doi.org/10.1111/tpj.14787.</p>\u0000 \u0000 <p>The above article, published online on 29 April 2020, in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Katherine Denby; Society for Experimental Biology (SEB); and John Wiley & Sons Ltd. The retraction has been agreed following a report submitted by the authors indicating that the imputation of genotypes outlined in the article caused errors in the reported positions of introgressions in the lines. The authors also declared that some of the pedigree information is inaccurate. As a result, all authors agree that the paper must be retracted. The authors have stated their intention to publish a corrected report with improved analyses of introgression positions.</p>\u0000 </section>\u0000 </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 4","pages":"1693"},"PeriodicalIF":6.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolin Tian, Fan Li, Jie Lin, Yun Xu, Kai Tian, Lihua Gu, Yanfeng Zhang, Jin-Rong Xu, Qinhu Wang
{"title":"Ancient duplications, multidimensional specializations, and defense role of hexokinases in wheat.","authors":"Xiaolin Tian, Fan Li, Jie Lin, Yun Xu, Kai Tian, Lihua Gu, Yanfeng Zhang, Jin-Rong Xu, Qinhu Wang","doi":"10.1111/tpj.17122","DOIUrl":"https://doi.org/10.1111/tpj.17122","url":null,"abstract":"<p><p>Hexokinases (HXKs), which sense and catalyze cellular sugar, play a critical role in the growth and development of various plants, including wheat, a primary source of human calories frequently attacked by fungal pathogens. However, the evolutionary dynamics and functional diversification of HXKs in wheat, particularly their roles in plant defense, remain unclear. Here, we discovered that the wheat hexokinase gene family originated through multiple ancient gene duplications across different plant lineages and has undergone comprehensive, multidimensional functional specialization in gene expression, subcellular localization, enzyme activity, and regulation of plant defense responses. Gene expression analysis suggests that two-thirds of the TaHXK genes are responsive to fungal infection. Subcellular analysis reveals that while six TaHXKs are localized in mitochondria, three TaHXKs from different phylogenetic branches are sorted into other cellular compartments. Notably, biochemical analysis shows that TaHXKs in mitochondria differ in their glucose-catalyzing activity, with TaHXK5 and TaHXK3 exhibiting the highest and lowest enzyme activity, respectively. Consistently, transient expression analysis suggests that TaHXK5 induces various plant defense responses, while TaHXK3 is defective in activating some plant defense responses. Furthermore, inactivation of the glucokinase activity of TaHXK5 compromised its function in defense activation, suggesting that mitochondrial TaHXKs display functional divergence in both enzyme activity and defense-inducing activity that are intrinsically connected. Overall, our findings reveal that the multidimensional specialization events following the ancient duplication events may have shaped the functional diversity of HXKs in wheat, shedding light on their evolutionary dynamics and potentially contributing to the improvement of wheat defense.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shenghong Ge, Xinlong Xiao, Ke Zhang, Changhong Yang, Jinsong Dong, Keying Chen, Qiuyu Lv, Viswanathan Satheesh, Mingguang Lei
{"title":"A plastidial lipoyl synthase LIP1p plays a crucial role in phosphate homeostasis in Arabidopsis.","authors":"Shenghong Ge, Xinlong Xiao, Ke Zhang, Changhong Yang, Jinsong Dong, Keying Chen, Qiuyu Lv, Viswanathan Satheesh, Mingguang Lei","doi":"10.1111/tpj.17117","DOIUrl":"https://doi.org/10.1111/tpj.17117","url":null,"abstract":"<p><p>Phosphate (Pi) homeostasis is important for plant growth and adaptation to the dynamic environment, which requires the precise regulation of phosphate transporter (PHT) trafficking from the endoplasmic reticulum to the plasma membrane. LIPOYL SYNTHASE 1p (LIP1p) is known as a key enzyme in plastids to catalyze lipoylation of pyruvate dehydrogenase complex for de novo fatty acid synthesis. It is unknown whether this process is involved in regulating Pi homeostasis. Here, we demonstrate a new role of LIP1p in controlling Pi homeostasis by regulating PHT1 trafficking. We recovered a weak mutant allele of LIP1p in Arabidopsis that accumulates much less Pi and has enhanced expression of phosphate starvation-induced genes. LIP1p mutation alters the lipid profile and compromises vesicle trafficking of PHT1 to the plasma membrane to impair Pi uptake. Beside phosphorus, the homeostasis of a series of mineral nutrients was also perturbed in lip1p mutant. Our findings provide powerful genetic evidence to support the linkage between lipoylation and ion homeostasis in plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The dynamic N<sup>1</sup>-methyladenosine RNA methylation provides insights into the tomato fruit ripening.","authors":"Lili Ma, Jinhua Zuo, Chunmei Bai, Anzhen Fu, Qing Wang, Zhongjing Zhou, Zhiping Deng, Jinjuan Tan, Mondher Bouzayen, Yanyan Zheng","doi":"10.1111/tpj.17095","DOIUrl":"https://doi.org/10.1111/tpj.17095","url":null,"abstract":"<p><p>N<sup>1</sup>-methyladenosine (m<sup>1</sup>A) methylation is an essential mechanism of gene regulation known to impact several biological processes in living organisms. However, little is known about the abundance, distribution, and functional significance of mRNA m<sup>1</sup>A modification during fruit ripening of tomato the main model species for fleshy fruits. Our study shows that m<sup>1</sup>A modifications are prevalent in tomato mRNA and are detected in lncRNA and circRNA. The distribution of m<sup>1</sup>A peaks in mRNA segments indicates that m<sup>1</sup>A is mainly enriched at the start codon and CDS regions. Assessing changes in global RNA methylation during fruit ripening in wild-type tomatoes and in the ripening-impaired Nr mutant affected in the ethylene receptor gene (SlETR3) revealed a decrease in the overall methylation levels from mature green (MG) stage to 6 days postbreaker (Br + 6). Nr mutant fruits show significantly lower methylation levels than Ailsa Craig (AC) fruits. Notably, differences in m<sup>1</sup>A methylation are well correlated to the expression levels of a number of key ripening-related genes. The integration of RNA-seq and MeRIP-seq data suggests a potential positive impact of m<sup>1</sup>A modifications on gene expression. In comparison to the AC fruits, the hypomethylation and reduced expression of ethylene-related genes, ACO3, EBF1, and ERF.D6, in the Nr mutants likely underpin the distinct phenotypic traits observed between the two fruit genotypes at the Br6 stage. Overall, our study brings further arguments supporting the potential significance of m<sup>1</sup>A methylation modifications in fruit ripening, a developmental process that is instrumental to plant reproduction and to fruit sensory and nutritional qualities.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Ting Tsang, Diep R Ganguly, Robert T Furbank, Susanne von Caemmerer, Florence R Danila
{"title":"Novel resources to investigate leaf plasmodesmata formation in C<sub>3</sub> and C<sub>4</sub> monocots.","authors":"Hong Ting Tsang, Diep R Ganguly, Robert T Furbank, Susanne von Caemmerer, Florence R Danila","doi":"10.1111/tpj.17113","DOIUrl":"https://doi.org/10.1111/tpj.17113","url":null,"abstract":"<p><p>Plasmodesmata (PD) are nanochannels that facilitate cell-to-cell transport in plants. More productive and photosynthetically efficient C<sub>4</sub> plants form more PD at the mesophyll (M)-bundle sheath (BS) interface in their leaves than their less efficient C<sub>3</sub> relatives. In C<sub>4</sub> leaves, PD play an essential role in facilitating the rapid metabolite exchange between the M and BS cells to operate a biochemical CO<sub>2</sub> concentrating mechanism, which increases the CO<sub>2</sub> partial pressure at the site of Rubisco in the BS cells and hence photosynthetic efficiency. The genetic mechanism controlling PD formation in C<sub>3</sub> and C<sub>4</sub> leaves is largely unknown, especially in monocot crops, due to the technical challenge of quantifying these nanostructures with electron microscopy. To address this issue, we have generated stably transformed lines of Oryza sativa (rice, C<sub>3</sub>) and Setaria viridis (setaria, C<sub>4</sub>) with fluorescent protein-tagged PD to build the first spatiotemporal atlas of leaf pit field (cluster of PD) density in monocots without the need for electron microscopy. Across leaf development, setaria had consistently more PD connections at the M-BS wall interface than rice while the difference in M-M pit field density varied. While light was a critical trigger of PD formation, cell type and function determined leaf pit field density. Complementary temporal mRNA sequencing and gene co-expression network analysis revealed that the pattern of pit field density correlated with differentially expressed PD-associated genes and photosynthesis-related genes. PD-associated genes identified from our co-expression network analysis are related to cell wall expansion, translation and chloroplast signalling.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}