Bidhan Chandra Malakar, Rajanesh Chandramohan, Vishmita Sethi, Sreeramaiah N. Gangappa
{"title":"B-BOX蛋白BBX21通过不同的机制抑制短日照和长日照条件下的热感觉生长","authors":"Bidhan Chandra Malakar, Rajanesh Chandramohan, Vishmita Sethi, Sreeramaiah N. Gangappa","doi":"10.1111/tpj.70345","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Thermomorphogenesis is a plant adaptive response, enabling morphological adjustments to fluctuating ambient temperatures. In <i>Arabidopsis</i>, the bHLH family of transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in promoting thermomorphogenesis, whose activity is negatively regulated by thermosensors EARLY FLOWERING 3 (ELF3) and PHYTOCHROME B (phyB). In response to warm temperatures, PIF4 transcript and protein levels increase to facilitate thermosensory growth. However, the regulatory mechanisms governing PIF4-mediated thermosensory growth remain partially elusive. Here, we demonstrate the role of a B-BOX protein, BBX21, in suppressing thermomorphogenesis through the PIF4 pathway. A mutation in <i>BBX21</i> (<i>bbx21</i>) results in a longer hypocotyl phenotype accompanied by upregulation in thermoresponsive gene expression, whereas overexpression of <i>BBX21</i> (<i>BBX21-OE</i>) results in an extremely short hypocotyl phenotype with dampened expression of temperature-responsive genes. Genetic analysis reveals that BBX21 acts upstream of PIF4 to regulate warm temperature-mediated hypocotyl growth. To limit excessive thermomorphogenesis, BBX21 inhibits PIF4 protein accumulation by repressing its transcript accumulation by directly binding to its promoter. Furthermore, our genetic and biochemical data show that the short hypocotyl phenotype of the <i>BBX21-OE</i> line is dependent on ELF3 and phyB. BBX21 enhances the ELF3 and phyB-mediated inhibition of PIF4 activity in SD and LD conditions, respectively, by enhancing their protein activity. Thus, this study elucidates the novel role of BBX21 in suppressing thermomorphogenesis, providing new insights into the molecular mechanism of PIF4-mediated regulation of hypocotyl growth in response to warm temperatures.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The B-BOX protein BBX21 suppresses thermosensory growth under short- and long-day photoperiods by distinct mechanisms\",\"authors\":\"Bidhan Chandra Malakar, Rajanesh Chandramohan, Vishmita Sethi, Sreeramaiah N. Gangappa\",\"doi\":\"10.1111/tpj.70345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Thermomorphogenesis is a plant adaptive response, enabling morphological adjustments to fluctuating ambient temperatures. In <i>Arabidopsis</i>, the bHLH family of transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in promoting thermomorphogenesis, whose activity is negatively regulated by thermosensors EARLY FLOWERING 3 (ELF3) and PHYTOCHROME B (phyB). In response to warm temperatures, PIF4 transcript and protein levels increase to facilitate thermosensory growth. However, the regulatory mechanisms governing PIF4-mediated thermosensory growth remain partially elusive. Here, we demonstrate the role of a B-BOX protein, BBX21, in suppressing thermomorphogenesis through the PIF4 pathway. A mutation in <i>BBX21</i> (<i>bbx21</i>) results in a longer hypocotyl phenotype accompanied by upregulation in thermoresponsive gene expression, whereas overexpression of <i>BBX21</i> (<i>BBX21-OE</i>) results in an extremely short hypocotyl phenotype with dampened expression of temperature-responsive genes. Genetic analysis reveals that BBX21 acts upstream of PIF4 to regulate warm temperature-mediated hypocotyl growth. To limit excessive thermomorphogenesis, BBX21 inhibits PIF4 protein accumulation by repressing its transcript accumulation by directly binding to its promoter. Furthermore, our genetic and biochemical data show that the short hypocotyl phenotype of the <i>BBX21-OE</i> line is dependent on ELF3 and phyB. BBX21 enhances the ELF3 and phyB-mediated inhibition of PIF4 activity in SD and LD conditions, respectively, by enhancing their protein activity. Thus, this study elucidates the novel role of BBX21 in suppressing thermomorphogenesis, providing new insights into the molecular mechanism of PIF4-mediated regulation of hypocotyl growth in response to warm temperatures.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70345\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70345","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The B-BOX protein BBX21 suppresses thermosensory growth under short- and long-day photoperiods by distinct mechanisms
Thermomorphogenesis is a plant adaptive response, enabling morphological adjustments to fluctuating ambient temperatures. In Arabidopsis, the bHLH family of transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in promoting thermomorphogenesis, whose activity is negatively regulated by thermosensors EARLY FLOWERING 3 (ELF3) and PHYTOCHROME B (phyB). In response to warm temperatures, PIF4 transcript and protein levels increase to facilitate thermosensory growth. However, the regulatory mechanisms governing PIF4-mediated thermosensory growth remain partially elusive. Here, we demonstrate the role of a B-BOX protein, BBX21, in suppressing thermomorphogenesis through the PIF4 pathway. A mutation in BBX21 (bbx21) results in a longer hypocotyl phenotype accompanied by upregulation in thermoresponsive gene expression, whereas overexpression of BBX21 (BBX21-OE) results in an extremely short hypocotyl phenotype with dampened expression of temperature-responsive genes. Genetic analysis reveals that BBX21 acts upstream of PIF4 to regulate warm temperature-mediated hypocotyl growth. To limit excessive thermomorphogenesis, BBX21 inhibits PIF4 protein accumulation by repressing its transcript accumulation by directly binding to its promoter. Furthermore, our genetic and biochemical data show that the short hypocotyl phenotype of the BBX21-OE line is dependent on ELF3 and phyB. BBX21 enhances the ELF3 and phyB-mediated inhibition of PIF4 activity in SD and LD conditions, respectively, by enhancing their protein activity. Thus, this study elucidates the novel role of BBX21 in suppressing thermomorphogenesis, providing new insights into the molecular mechanism of PIF4-mediated regulation of hypocotyl growth in response to warm temperatures.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.