Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-10-08DOI: 10.1016/j.tibtech.2024.09.010
Tushuai Li, Wenxue Sun, Da Qian, Peng Wang, Xingyu Liu, Chengsheng He, Tong Chang, Guangfu Liao, Jie Zhang
{"title":"Plant-derived biomass-based hydrogels for biomedical applications.","authors":"Tushuai Li, Wenxue Sun, Da Qian, Peng Wang, Xingyu Liu, Chengsheng He, Tong Chang, Guangfu Liao, Jie Zhang","doi":"10.1016/j.tibtech.2024.09.010","DOIUrl":"10.1016/j.tibtech.2024.09.010","url":null,"abstract":"<p><p>Hydrogels made of plant-derived biomass have gained popularity in biomedical applications because they are frequently affordable, readily available, and biocompatible. Finding the perfect plant-derived biomass-based hydrogels for biomedicine that can replicate essential characteristics of human tissues in regard to structure, function, and performance has proved to be difficult. In this review, we summarize some of the major contributions made to this topic, covering basic ideas and different biomass-based hydrogels made of cellulose, hemicellulose, and lignin. Also included is an in-depth discussion regarding the biosafety and toxicity assessments of biomass-based hydrogels. Finally, this review also highlights important scientific debates and major obstacles regarding biomass-based hydrogels for biomedical applications.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"802-811"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-10-29DOI: 10.1016/j.tibtech.2024.09.018
Likhitha Reddy Kummetha, Jeong-Joo Oh, Franka H van der Linden, Marie-Eve Aubin-Tam
{"title":"Leveraging the versatile properties of bacterial spores in materials.","authors":"Likhitha Reddy Kummetha, Jeong-Joo Oh, Franka H van der Linden, Marie-Eve Aubin-Tam","doi":"10.1016/j.tibtech.2024.09.018","DOIUrl":"10.1016/j.tibtech.2024.09.018","url":null,"abstract":"<p><p>Inspired by biological functions of living systems, researchers have engineered cells as independent functional materials or integrated them within a natural or synthetic matrix to create engineered living materials (ELMs). However, the 'livingness' of cells in such materials poses serious drawbacks, such as a short lifespan and the need for cold-chain logistics. Bacterial spores have emerged as a game changer to bypass these shortcomings as a result of their intrinsic dormancy and resistance against harsh conditions. Emerging synthetic biology tools tailored for engineering spores and better understanding of their physical properties have led to novel applications of spore-based materials. Here, we review recent advances in such materials and discuss future challenges for the development of time- and cost-efficient spore-based materials with high performance.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"812-825"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-10-09DOI: 10.1016/j.tibtech.2024.09.013
Sixun Chen, Dan Liu
{"title":"Rapid manufacturing of CAR-T therapy: strategies and impact.","authors":"Sixun Chen, Dan Liu","doi":"10.1016/j.tibtech.2024.09.013","DOIUrl":"10.1016/j.tibtech.2024.09.013","url":null,"abstract":"<p><p>The accessibility of autologous chimeric antigen receptor T cell (CAR-T) therapies is challenged by the complex processes and capacity constraints of manufacturing. Rapid manufacturing capable of shortening manufacturing timelines could transform the CAR-T field. Here, we outline approaches to rapid CAR-T manufacturing, highlighting its impact on various stakeholders in the landscape.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"745-748"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-11-25DOI: 10.1016/j.tibtech.2024.10.016
Aurin M Vos, Evelien Maaskant, Wouter Post, Dirk Bosch
{"title":"Plant-inspired building blocks for future plastics.","authors":"Aurin M Vos, Evelien Maaskant, Wouter Post, Dirk Bosch","doi":"10.1016/j.tibtech.2024.10.016","DOIUrl":"10.1016/j.tibtech.2024.10.016","url":null,"abstract":"<p><p>The transition from a linear fossil-based economy to a renewable circular economy requires a new approach to produce building blocks for plastics. This provides opportunities to reshape the plastic landscape and will positively impact the wide range of applications that make use of plastics. We propose that plant enzymes, which underlie the large biochemical diversity present in plant specialized metabolism, will facilitate the production of novel building blocks for new polymers via biotechnological processes. Thereby, plant-inspired plastic building blocks may enable the development of new plastics for targeted applications that can contribute to a future with renewable plastics.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"749-758"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-11-08DOI: 10.1016/j.tibtech.2024.10.004
Anagha Krishnan, Lukas R Dahlin, Michael T Guarnieri, Joseph C Weissman, Matthew C Posewitz
{"title":"Small cells with big photosynthetic productivities: biotechnological potential of the Picochlorum genus.","authors":"Anagha Krishnan, Lukas R Dahlin, Michael T Guarnieri, Joseph C Weissman, Matthew C Posewitz","doi":"10.1016/j.tibtech.2024.10.004","DOIUrl":"10.1016/j.tibtech.2024.10.004","url":null,"abstract":"<p><p>The Picochlorum genus is a distinctive eukaryotic green-algal clade that is the focus of several current biotechnological studies. It is capable of extremely rapid growth rates and has exceptional tolerances to high salinity, intense light, and elevated temperatures. Importantly, it has robust stability and high-biomass productivities in outdoor field trials in seawater. These features have propelled Picochlorum into the spotlight as a promising model for both fundamental and biotechnological research. Recently, several genetic tools, including genome editing, were developed for these algae, enabling insights into Picochlorum photophysiology and algal transformations for expanded capabilities. Here, we survey the Picochlorum genus, its genetic toolbox, recently characterized transformants, and discuss the commercial potential of Picochlorum as a salt-water photoautotrophic biocatalyst.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"759-772"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-09-25DOI: 10.1016/j.tibtech.2024.09.005
Ying Yan, Hassan M M Ahmed, Ernst A Wimmer, Marc F Schetelig
{"title":"Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii.","authors":"Ying Yan, Hassan M M Ahmed, Ernst A Wimmer, Marc F Schetelig","doi":"10.1016/j.tibtech.2024.09.005","DOIUrl":"10.1016/j.tibtech.2024.09.005","url":null,"abstract":"<p><p>Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"826-837"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2025-02-08DOI: 10.1016/j.tibtech.2025.01.002
Yang Chen, Yufei Shi, Ziguo Wang, Xin An, Siyu Wei, Christos Andronis, John Vontas, Jin-Jun Wang, Jinzhi Niu
{"title":"dsRNAEngineer: a web-based tool of comprehensive dsRNA design for pest control.","authors":"Yang Chen, Yufei Shi, Ziguo Wang, Xin An, Siyu Wei, Christos Andronis, John Vontas, Jin-Jun Wang, Jinzhi Niu","doi":"10.1016/j.tibtech.2025.01.002","DOIUrl":"10.1016/j.tibtech.2025.01.002","url":null,"abstract":"<p><p>Over the past two decades, many double-stranded (ds)-RNAs have been synthesized to silence target genes for exploration of gene functions in pests. Some of these dsRNAs are lethal to pests, leading to a new category of pesticides. The generation of these environmentally friendly pesticides requires precise in silico design of dsRNA molecules that target pests but not non-pest organisms. Current efforts in dsRNA design focus mainly on the analysis of the target gene sequence, lacking comprehensive analysis of all transcripts of the whole transcriptome per given species, causing low efficiency and imprecise dsRNA target exploration. To address these limitations, we created the dsRNAEngineer online platform (https://dsrna-engineer.cn), which allows comprehensive and rational dsRNA design, incorporating hundreds of pest and non-pest transcriptomes. Developed functionalities include screen-target (screen conserved genes for cotargets of various pest species), on-target, off-target, and multi-target to generate optimal dsRNA for precise pest control.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"969-983"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-10-10DOI: 10.1016/j.tibtech.2024.09.016
Jia Qian Tor, Quang Bach Le, Hariharan Ezhilarasu, Weng Wan Chan, Deepak Choudhury
{"title":"Advancements and regulations of biomanufacturing cell-based cartilage repair therapies.","authors":"Jia Qian Tor, Quang Bach Le, Hariharan Ezhilarasu, Weng Wan Chan, Deepak Choudhury","doi":"10.1016/j.tibtech.2024.09.016","DOIUrl":"10.1016/j.tibtech.2024.09.016","url":null,"abstract":"<p><p>Cell-based therapies for cartilage repair, including autologous chondrocyte implantation and allogeneic stem cell treatments, show great promise but face challenges due to high costs and regulatory hurdles. This review summarizes available and investigational products, focusing on allogeneic therapies and the impact of diverse regulatory landscapes on their clinical translation.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"738-741"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR/Cas: a powerful tool for designing and improving oil crops.","authors":"Lijie Li, Dangquan Zhang, Zhiyong Zhang, Baohong Zhang","doi":"10.1016/j.tibtech.2024.09.007","DOIUrl":"10.1016/j.tibtech.2024.09.007","url":null,"abstract":"<p><p>Improving oil yield and quality is a major goal for crop breeding, and CRISPR/Cas-mediated genome editing has opened a new era for designing oil crops with enhanced yield and quality. CRISPR/Cas technology can not only increase oil production but also enhance oil quality, including enhancing pharmaceutical and health components, improving oil nutrients, and removing allergic and toxic components. As new molecular targets for oil biosynthesis are discovered and the CRISPR/Cas system is further improved, CRISPR/Cas will become a better molecular tool for designing new oil crops with higher oil production, enhanced nutrients, and improved health components. 'CRISPRized' oil crops will have broad applications both in industry (e.g., as biofuels) and in daily human life.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"773-789"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in biotechnologyPub Date : 2025-04-01Epub Date: 2024-12-13DOI: 10.1016/j.tibtech.2024.11.010
Alexandra Cleaver, Runpeng Luo, Oliver B Smith, Lydia Murphy, Benjamin Schwessinger, Joseph Brock
{"title":"High-throughput optimisation of protein secretion in yeast via an engineered biosensor.","authors":"Alexandra Cleaver, Runpeng Luo, Oliver B Smith, Lydia Murphy, Benjamin Schwessinger, Joseph Brock","doi":"10.1016/j.tibtech.2024.11.010","DOIUrl":"10.1016/j.tibtech.2024.11.010","url":null,"abstract":"<p><p>Secretion of high-value proteins and enzymes is fundamental to the synthetic biology economy, allowing continuous fermentation during production and protein purification without cell lysis. Most eukaryotic protein secretion is encoded by an N-terminal signal peptide (SP); however, the strong impact of SP sequence variation on the secretion efficiency of a given protein is not well defined. Despite high natural SP sequence diversity, most recombinant protein secretion systems use only a few well-characterised SPs. Additionally, the selection of promoters and terminators can significantly affect secretion efficiency, yet screening numerous genetic constructs for optimal sequences remains inefficient. Here, we adapted a yeast G-protein-coupled receptor (GPCR) biosensor, to measure the concentration of a peptide tag that is co-secreted with any protein of interest (POI). Thus, protein secretion efficiency can be quantified via induction of a fluorescent reporter that is upregulated downstream of receptor activation. This enabled high-throughput screening of over 6000 combinations of promoters, SPs, and terminators, assembled using one-pot Combinatorial Golden Gate cloning. We demonstrate this biosensor can quickly identify best combinations for secretion and quantify secretion levels. Our results highlight the importance of SP optimisation as an initial step in designing heterologous protein expression strategies, demonstrating the value of high-throughput screening (HTS) approaches for maximising secretion efficiency.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"838-867"},"PeriodicalIF":14.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}