Trends in biotechnology最新文献

筛选
英文 中文
Flow fermentation: microsystems for whole-cell bioproduction processes.
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-30 DOI: 10.1016/j.tibtech.2024.12.007
Lina Hollmann, Lars M Blank, Alexander Grünberger
{"title":"Flow fermentation: microsystems for whole-cell bioproduction processes.","authors":"Lina Hollmann, Lars M Blank, Alexander Grünberger","doi":"10.1016/j.tibtech.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.007","url":null,"abstract":"<p><p>Industrial biotechnology utilizes whole cells for the production of value-added goods in large-scale bioreactors. The miniaturization of bioreactors has greatly contributed to the understanding and optimization of bioprocesses. However, microsystems for the production of value-added goods have thus far only been established in chemistry and biocatalysis/biotransformation but are rarely applied for whole-cell bioprocesses. Here, we discuss the fundamental and translational aspects of how microsystems could be used as production units for future whole-cell bioproduction processes. The characteristics and resulting advantages of microsystems are introduced and current production approaches are highlighted. Finally, we provide perspectives on establishing future whole-cell bioproduction processes at the microscale, here introduced as flow fermentation. Flow fermentation potentially enables entirely new bioprocesses and application fields.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care.
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-24 DOI: 10.1016/j.tibtech.2024.12.010
Sabine Szunerits, Er-Yuan Chuang, Jen-Chang Yang, Rabah Boukherroub, Thierry Burnouf
{"title":"Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care.","authors":"Sabine Szunerits, Er-Yuan Chuang, Jen-Chang Yang, Rabah Boukherroub, Thierry Burnouf","doi":"10.1016/j.tibtech.2024.12.010","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.010","url":null,"abstract":"<p><p>Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate. Hydrogel-based bandages are effective carriers that stabilize pEVs for optimal personalized wound care. These bandages can be tailored for easy removal to minimize damage to regenerated tissue and can incorporate antibacterial or moisture-retaining properties. Furthermore, the possibility of integrating sensors in the wound bed will enable a theragnostic approach to healing. This review explores advancements in pEV-loaded hydrogels and their potential for personalized clinical applications.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distillation for in situ recovery of volatile fermentation products.
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-23 DOI: 10.1016/j.tibtech.2024.12.009
Adrie J J Straathof, Tamara Janković, Anton A Kiss
{"title":"Distillation for in situ recovery of volatile fermentation products.","authors":"Adrie J J Straathof, Tamara Janković, Anton A Kiss","doi":"10.1016/j.tibtech.2024.12.009","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.009","url":null,"abstract":"<p><p>Many fermentation products inhibit their own microbial production, which complicates industrial-scale fermentation development for these products. When a product is volatile, this inhibition can be circumvented by removing product during fermentation through evaporation in a loop around the bioreactor. Microbes can survive this loop if its temperature is reduced using vacuum. Then, regrowing of microbes is not required. From a separation efficiency viewpoint, the evaporation loop should not use a single equilibrium stage, but a multistage vacuum distillation column. Such in situ product removal (ISPR) by vacuum distillation has hardly been recognized as an option, however. Costs for this product removal with subsequent purification are modest, even when product titers are low. A prerequisite is the use of advanced energy integration and heat pumping methods.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding bacterial ecology to combat antibiotic resistance dissemination.
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-23 DOI: 10.1016/j.tibtech.2024.12.011
Dongbo Wang, Xiangming Zhou, Qizi Fu, Yingbin Li, Bing-Jie Ni, Xuran Liu
{"title":"Understanding bacterial ecology to combat antibiotic resistance dissemination.","authors":"Dongbo Wang, Xiangming Zhou, Qizi Fu, Yingbin Li, Bing-Jie Ni, Xuran Liu","doi":"10.1016/j.tibtech.2024.12.011","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.011","url":null,"abstract":"<p><p>The dissemination of antibiotic resistance from environmental sources is a growing concern. Despite the widespread occurrence of antibiotic resistance transmission events, there are actually multiple obstacles in the ecosystem that restrict the flow of bacteria and genes, in particular nonnegligible biological barriers. How these ecological factors help combat the dissemination of antibiotic resistance and relevant antibiotic resistance-diminishing organisms (ARDOs) deserves further exploration. This review summarizes the factors that influence the growth, metabolism, and environmental adaptation of antibiotic-resistant bacteria (ARB) and restrict the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Additionally, this review discusses the achievements in the application of ARDOs to improve biotechnology for wastewater and solid waste remediation while highlighting current challenges limiting their broader implementation.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures.
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-23 DOI: 10.1016/j.tibtech.2024.12.005
Juan Andres Martinez, Romain Bouchat, Tiphaine Gallet de Saint Aurin, Luz María Martínez, Luis Caspeta, Samuel Telek, Andrew Zicler, Guillermo Gosset, Frank Delvigne
{"title":"Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures.","authors":"Juan Andres Martinez, Romain Bouchat, Tiphaine Gallet de Saint Aurin, Luz María Martínez, Luis Caspeta, Samuel Telek, Andrew Zicler, Guillermo Gosset, Frank Delvigne","doi":"10.1016/j.tibtech.2024.12.005","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.005","url":null,"abstract":"<p><p>Much attention has focused on understanding microbial interactions leading to stable co-cultures. In this work, substrate pulsing was performed to promote better control of the metabolic niches (MNs) corresponding to each species, leading to the continuous co-cultivation of diverse microbial organisms. We used a cell-machine interface, which allows adjustment of the temporal profile of two MNs according to a rhythm, ensuring the successive growth of two species, in our case, a yeast and a bacterium. The resulting approach, called 'automated adjustment of metabolic niches' (AAMN), was effective for stabilizing both cooperative and competitive co-cultures. AAMN can be considered an enabling technology for the deployment of co-cultures in bioprocesses, demonstrated here based on the continuous bioproduction of p-coumaric acid. The data accumulated suggest that AAMN could be used not only for a wider range of biological systems, but also to gain fundamental insights into microbial interaction mechanisms.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput screening strategies for plastic-depolymerizing enzymes.
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-21 DOI: 10.1016/j.tibtech.2024.12.008
Maxine Yew, Yifan Yang, Qinhong Wang, Leilei Zhu
{"title":"High-throughput screening strategies for plastic-depolymerizing enzymes.","authors":"Maxine Yew, Yifan Yang, Qinhong Wang, Leilei Zhu","doi":"10.1016/j.tibtech.2024.12.008","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.008","url":null,"abstract":"<p><p>A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA). We discuss the application scope of the existing methods, as well as potential developments and integration of screening techniques to identify and enhance plastic depolymerases. The prospects for screening a wider range of plastic depolymerases with the advances in biotechnology tools such as droplet microfluidics and biosensors are highlighted.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-conventional yeasts: promising cell factories for organic acid bioproduction. 非常规酵母:有机酸生物生产的有前途的细胞工厂。
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-10 DOI: 10.1016/j.tibtech.2024.12.004
Yupeng Wang, Yi Wang, Jiakai Cui, Chenchen Wu, Bo Yu, Limin Wang
{"title":"Non-conventional yeasts: promising cell factories for organic acid bioproduction.","authors":"Yupeng Wang, Yi Wang, Jiakai Cui, Chenchen Wu, Bo Yu, Limin Wang","doi":"10.1016/j.tibtech.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.004","url":null,"abstract":"<p><p>Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains. We also use selected examples of three-carbon (C3), C4, and C6 organic acids to illustrate the ongoing efforts and challenges of using non-conventional yeasts for organic acid production. This review provides theoretical guidance for the construction of highly robust organic acid producers.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial proteome microarray technology in biomedical research. 生物医学研究中的细菌蛋白质组微阵列技术。
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-03 DOI: 10.1016/j.tibtech.2024.12.001
Chia-Chi Lin, Chien-Sheng Chen
{"title":"Bacterial proteome microarray technology in biomedical research.","authors":"Chia-Chi Lin, Chien-Sheng Chen","doi":"10.1016/j.tibtech.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.12.001","url":null,"abstract":"<p><p>Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs). This review highlights significant outcomes from recent studies, focusing on their diverse applications in biomedical research. Notable findings include the identification of novel antigens and diagnostic markers for gastrointestinal infections, autoimmune diseases, and mental health disorders. This technology promises to further elucidate the complex relationship between bacteria and their hosts, ultimately informing the development of new diagnostic, therapeutic, and preventive strategies.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vascularized human brain organoids: current possibilities and prospects. 血管化人脑类器官:目前的可能性和前景。
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-02 DOI: 10.1016/j.tibtech.2024.11.021
Lois Kistemaker, Emma J van Bodegraven, Helga E de Vries, Elly M Hol
{"title":"Vascularized human brain organoids: current possibilities and prospects.","authors":"Lois Kistemaker, Emma J van Bodegraven, Helga E de Vries, Elly M Hol","doi":"10.1016/j.tibtech.2024.11.021","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.11.021","url":null,"abstract":"<p><p>Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered. For instance, vessel-like structures in vhBOs do not contain blood-like flow nor do they form a functional blood-brain barrier (BBB). Extended characterization, standardization, and the development of new bioengineering techniques may enable broader applications of vhBOs such as drug transport studies.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial messengers: nucleic acid delivery by bacteria. 微生物信使:细菌传递核酸。
IF 14.3 1区 工程技术
Trends in biotechnology Pub Date : 2025-01-01 Epub Date: 2024-08-07 DOI: 10.1016/j.tibtech.2024.07.010
Alison Heggie, Teresa L M Thurston, Tom Ellis
{"title":"Microbial messengers: nucleic acid delivery by bacteria.","authors":"Alison Heggie, Teresa L M Thurston, Tom Ellis","doi":"10.1016/j.tibtech.2024.07.010","DOIUrl":"10.1016/j.tibtech.2024.07.010","url":null,"abstract":"<p><p>The demand for diverse nucleic acid delivery vectors, driven by recent biotechnological breakthroughs, offers opportunities for continuous improvements in efficiency, safety, and delivery capacity. With their enhanced safety and substantial cargo capacity, bacterial vectors offer significant potential across a variety of applications. In this review, we explore methods to engineer bacteria for nucleic acid delivery, including strategies such as engineering attenuated strains, lysis circuits, and conjugation machinery. Moreover, we explore pioneering techniques, such as manipulating nanoparticle (NP) coatings and outer membrane vesicles (OMVs), representing the next frontier in bacterial vector engineering. We foresee these advancements in bacteria-mediated nucleic acid delivery, through combining bacterial pathogenesis with engineering biology techniques, as a pivotal step forward in the evolution of nucleic acid delivery technologies.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"145-161"},"PeriodicalIF":14.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信