Jasneil Singh, Alexander M Ruhoff, Deepu Ashok, Steven G Wise, Anna Waterhouse
{"title":"Engineering advanced in vitro models of endothelial dysfunction.","authors":"Jasneil Singh, Alexander M Ruhoff, Deepu Ashok, Steven G Wise, Anna Waterhouse","doi":"10.1016/j.tibtech.2025.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial dysfunction is an important initiator of cardiovascular disease, the leading cause of death globally, and often manifests in arterial regions with disturbed blood flow. Experimental model advances have crucially helped unravel physiological mechanisms. While in vivo models provide a dynamic environment, they often fail to mimic human physiology precisely and face significant ethical barriers. Advanced in vitro models, including organs-on-chips and bioreactors, combine human cells and blood flow to accurately replicate endothelial dysfunction. Newer models have enhanced scalability and accuracy, with organs-on-chips commonly outperforming standard preclinical methods. Importantly, recent endothelial dysfunction discoveries leverage dynamic models to identify and evaluate clinically promising therapeutics. Here, we examine these developments and explore opportunities to develop next-generation in vitro models of endothelial dysfunction.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.03.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Engineering advanced in vitro models of endothelial dysfunction.
Endothelial dysfunction is an important initiator of cardiovascular disease, the leading cause of death globally, and often manifests in arterial regions with disturbed blood flow. Experimental model advances have crucially helped unravel physiological mechanisms. While in vivo models provide a dynamic environment, they often fail to mimic human physiology precisely and face significant ethical barriers. Advanced in vitro models, including organs-on-chips and bioreactors, combine human cells and blood flow to accurately replicate endothelial dysfunction. Newer models have enhanced scalability and accuracy, with organs-on-chips commonly outperforming standard preclinical methods. Importantly, recent endothelial dysfunction discoveries leverage dynamic models to identify and evaluate clinically promising therapeutics. Here, we examine these developments and explore opportunities to develop next-generation in vitro models of endothelial dysfunction.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).