用于知识合成和人工智能增强生物制造的大型语言模型。

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wenyu Li, Zhitao Mao, Zhengyang Xiao, Xiaoping Liao, Mattheos Koffas, Yixin Chen, Hongwu Ma, Yinjie J Tang
{"title":"用于知识合成和人工智能增强生物制造的大型语言模型。","authors":"Wenyu Li, Zhitao Mao, Zhengyang Xiao, Xiaoping Liao, Mattheos Koffas, Yixin Chen, Hongwu Ma, Yinjie J Tang","doi":"10.1016/j.tibtech.2025.02.008","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) are transforming synthetic biology (SynBio) education and research. In this review we cover the advancements and potential impacts of LLMs in biomanufacturing. First, we summarize recent developments and compare the capabilities of US and Chinese language models in addressing fundamental SynBio questions. Second, we discuss the application of LLMs in extracting SynBio information from unstructured data, constructing knowledge graphs, and enabling retrieval-augmented generation. Third, we anticipate that LLMs will not only revolutionize the design-build-test-learn (DBTL) cycle in metabolic modeling and engineering but also enable self-driving laboratories in future biomanufacturing. Finally, we emphasize the need for establishing benchmarks for LLMs, fostering trustworthy knowledge synthesis, developing biosecurity frameworks to prevent misuse, and encouraging collaboration among artificial intelligence (AI) scientists, SynBio researchers, and bioprocess engineers.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language model for knowledge synthesis and AI-enhanced biomanufacturing.\",\"authors\":\"Wenyu Li, Zhitao Mao, Zhengyang Xiao, Xiaoping Liao, Mattheos Koffas, Yixin Chen, Hongwu Ma, Yinjie J Tang\",\"doi\":\"10.1016/j.tibtech.2025.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) are transforming synthetic biology (SynBio) education and research. In this review we cover the advancements and potential impacts of LLMs in biomanufacturing. First, we summarize recent developments and compare the capabilities of US and Chinese language models in addressing fundamental SynBio questions. Second, we discuss the application of LLMs in extracting SynBio information from unstructured data, constructing knowledge graphs, and enabling retrieval-augmented generation. Third, we anticipate that LLMs will not only revolutionize the design-build-test-learn (DBTL) cycle in metabolic modeling and engineering but also enable self-driving laboratories in future biomanufacturing. Finally, we emphasize the need for establishing benchmarks for LLMs, fostering trustworthy knowledge synthesis, developing biosecurity frameworks to prevent misuse, and encouraging collaboration among artificial intelligence (AI) scientists, SynBio researchers, and bioprocess engineers.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.02.008\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.02.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)正在改变合成生物学(SynBio)的教育和研究。在这篇综述中,我们介绍了llm在生物制造中的进展和潜在影响。首先,我们总结了最近的发展,并比较了美国和中国语言模型在解决基本SynBio问题方面的能力。其次,我们讨论了llm在从非结构化数据中提取SynBio信息、构建知识图谱和实现检索增强生成方面的应用。第三,我们预计llm不仅将彻底改变代谢建模和工程中的设计-构建-测试-学习(DBTL)周期,还将使未来生物制造中的自动驾驶实验室成为可能。最后,我们强调需要建立法学硕士的基准,促进可信赖的知识合成,开发生物安全框架以防止滥用,并鼓励人工智能(AI)科学家,合成生物研究人员和生物过程工程师之间的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language model for knowledge synthesis and AI-enhanced biomanufacturing.

Large language models (LLMs) are transforming synthetic biology (SynBio) education and research. In this review we cover the advancements and potential impacts of LLMs in biomanufacturing. First, we summarize recent developments and compare the capabilities of US and Chinese language models in addressing fundamental SynBio questions. Second, we discuss the application of LLMs in extracting SynBio information from unstructured data, constructing knowledge graphs, and enabling retrieval-augmented generation. Third, we anticipate that LLMs will not only revolutionize the design-build-test-learn (DBTL) cycle in metabolic modeling and engineering but also enable self-driving laboratories in future biomanufacturing. Finally, we emphasize the need for establishing benchmarks for LLMs, fostering trustworthy knowledge synthesis, developing biosecurity frameworks to prevent misuse, and encouraging collaboration among artificial intelligence (AI) scientists, SynBio researchers, and bioprocess engineers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信