Jie Ming, Shou-Qing Ni, Ziyu Guo, Zhi-Bin Wang, Liangke Xie
{"title":"光催化材料-微生物复合系统在水净化中的应用。","authors":"Jie Ming, Shou-Qing Ni, Ziyu Guo, Zhi-Bin Wang, Liangke Xie","doi":"10.1016/j.tibtech.2024.11.012","DOIUrl":null,"url":null,"abstract":"<p><p>Biological processes are widely used technologies for water decontamination, but they are often limited by insufficient bioavailable carbon sources or biorecalcitrant contaminants. The recently developed photocatalytic material-microorganism hybrid (PMH) system combines the light-harvesting capacities of photocatalytic materials with specific enzymatic activities of whole cells, efficiently achieving solar-to-chemical conversion. By integrating the benefits of both photocatalysis and biological processes, the PMH system shows great potential for water decontamination. While recent reviews have focused primarily on its application in green energy development, this review emphasizes the latest advancements in PMH systems for water decontamination, covering various applications, key considerations, and synergistic mechanisms. This review aims to provide a fundamental understanding of the PMH system and explore its broader potential in environmental remediation.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic material-microorganism hybrid systems in water decontamination.\",\"authors\":\"Jie Ming, Shou-Qing Ni, Ziyu Guo, Zhi-Bin Wang, Liangke Xie\",\"doi\":\"10.1016/j.tibtech.2024.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological processes are widely used technologies for water decontamination, but they are often limited by insufficient bioavailable carbon sources or biorecalcitrant contaminants. The recently developed photocatalytic material-microorganism hybrid (PMH) system combines the light-harvesting capacities of photocatalytic materials with specific enzymatic activities of whole cells, efficiently achieving solar-to-chemical conversion. By integrating the benefits of both photocatalysis and biological processes, the PMH system shows great potential for water decontamination. While recent reviews have focused primarily on its application in green energy development, this review emphasizes the latest advancements in PMH systems for water decontamination, covering various applications, key considerations, and synergistic mechanisms. This review aims to provide a fundamental understanding of the PMH system and explore its broader potential in environmental remediation.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.11.012\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.11.012","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Photocatalytic material-microorganism hybrid systems in water decontamination.
Biological processes are widely used technologies for water decontamination, but they are often limited by insufficient bioavailable carbon sources or biorecalcitrant contaminants. The recently developed photocatalytic material-microorganism hybrid (PMH) system combines the light-harvesting capacities of photocatalytic materials with specific enzymatic activities of whole cells, efficiently achieving solar-to-chemical conversion. By integrating the benefits of both photocatalysis and biological processes, the PMH system shows great potential for water decontamination. While recent reviews have focused primarily on its application in green energy development, this review emphasizes the latest advancements in PMH systems for water decontamination, covering various applications, key considerations, and synergistic mechanisms. This review aims to provide a fundamental understanding of the PMH system and explore its broader potential in environmental remediation.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).