Trends in MicrobiologyPub Date : 2024-10-01Epub Date: 2024-08-31DOI: 10.1016/j.tim.2024.08.008
Jingyi Zhang, Heng Sun, Feng Feng, Pengbo Liang
{"title":"Chitinase-assisted winner: nematodes antagonize symbiotic microbes.","authors":"Jingyi Zhang, Heng Sun, Feng Feng, Pengbo Liang","doi":"10.1016/j.tim.2024.08.008","DOIUrl":"10.1016/j.tim.2024.08.008","url":null,"abstract":"<p><p>Nematodes do not merely siphon off plant resources but also sabotage the plant's mutualistic relationships with beneficial microbes. Yang and colleagues elegantly elucidated this generalizable molecular antagonism, revealing how Heterodera glycines, the notorious soybean cyst nematode (SCN), suppresses beneficial microbial symbiosis through a specific chitinase, HgCht2.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"931-933"},"PeriodicalIF":14.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in MicrobiologyPub Date : 2024-10-01Epub Date: 2024-03-21DOI: 10.1016/j.tim.2024.03.002
Magnus Hallas-Møller, Meike Burow, Bernard Henrissat, Katja Salomon Johansen
{"title":"Cryptococcus neoformans: plant-microbe interactions and ecology.","authors":"Magnus Hallas-Møller, Meike Burow, Bernard Henrissat, Katja Salomon Johansen","doi":"10.1016/j.tim.2024.03.002","DOIUrl":"10.1016/j.tim.2024.03.002","url":null,"abstract":"<p><p>While the opportunistic human pathogens Cryptococcus neoformans and Cryptococcus gattii are often isolated from plants and plant-related material, evidence suggests that these Cryptococcus species do not directly infect plants. Studies find that plants are important for Cryptococcus mating and dispersal. However, these studies have not provided enough detail about how plants and these fungi interact, especially in ways that could show the fungi are capable of causing disease. This review synthesizes recent findings from studies utilizing different plant models associated with the ecology of C. neoformans and C. gattii. Unanswered questions about their environmental role are highlighted. Overall, current research indicates that Cryptococcus utilizes plants as a substrate rather than harming them, arguing against Cryptococcus as a genuine plant pathogen. We hypothesize that plants represent reservoirs that aid dispersal, not hosts vulnerable to infection.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"984-995"},"PeriodicalIF":14.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Borrelia (Borreliella) burgdorferi.","authors":"Martin Strnad, Marie Vancová, Ryan O M Rego","doi":"10.1016/j.tim.2024.09.002","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.002","url":null,"abstract":"","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transitioning ecosystems: how will permafrost cryophiles respond to a changing climate?","authors":"Lexi Mollica, Meghan Craughwell, Jackie Goordial","doi":"10.1016/j.tim.2024.08.009","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.009","url":null,"abstract":"<p><p>Permafrost harbours a diversity of cryophilic microorganisms that can be metabolically active at sub-zero temperatures and likely play a role in global carbon cycling. This forum article explores possible impacts of permafrost warming on cold-adapted microbiota, highlights underexplored areas of research, and suggests future short and long-term research foci.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TldR: TnpB’s evolutionary shift from transposon nucleases to RNA-guided transcriptional regulators","authors":"Prarthana Mohanraju, Wen Y. Wu","doi":"10.1016/j.tim.2024.09.004","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.004","url":null,"abstract":"<p>TnpB proteins are transposon-encoded nucleases involved in transposon DNA propagation. <span><span>Wiegand <em>et al</em>.</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> identified a new class of TnpB-derived proteins, called TnpB-like nuclease-dead repressors (TldRs), which function as RNA-guided transcriptional regulators targeting conserved promoter regions. In <em>Enterobacteriaceae</em>, bacteriophages use TldRs and an adjacent phage gene to modulate host flagellar assembly.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":"45 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen-Zhen Yan, Hang-Wei Hu, Chao Xiong, Anton Y. Peleg, Qing-Lin Chen, Tadeo Sáez-Sandino, Fernando Maestre, Manuel Delgado-Baquerizo, Brajesh K. Singh
{"title":"Environmental microbiome, human fungal pathogens, and antimicrobial resistance","authors":"Zhen-Zhen Yan, Hang-Wei Hu, Chao Xiong, Anton Y. Peleg, Qing-Lin Chen, Tadeo Sáez-Sandino, Fernando Maestre, Manuel Delgado-Baquerizo, Brajesh K. Singh","doi":"10.1016/j.tim.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.003","url":null,"abstract":"<p>Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats. This is particularly important given the significant increase in fungal infections linked to climate change and pandemics. Environmental factors play critical roles in AFR and fungal infections, as many clinically relevant fungal pathogens and AFR originate from the environment (mainly soil). In addition, the environment serves as a potential rich source for the discovery of new antifungal agents, including mycoviruses and bacterial probiotics, which hold promise for effective therapies. In this article, we summarise the environmental pathways of AFR development and spread among high priority fungal pathogens, and propose potential mechanisms of AFR development and spread. We identify a research priority list to address key knowledge gaps in our understanding of environmental AFR. Further, we propose an integrated roadmap for predictive risk management of AFR that is critical for effective surveillance and forecasting of public health outcomes under current and future climatic conditions.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":"212 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Herold, Sera Choi, Sheng Yang He, Cyril Zipfel
{"title":"The conserved AvrE family of bacterial effectors: functions and targets during pathogenesis","authors":"Laura Herold, Sera Choi, Sheng Yang He, Cyril Zipfel","doi":"10.1016/j.tim.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.007","url":null,"abstract":"<p>The AvrE family of type III secreted effectors are highly conserved among many agriculturally important phytopathogenic bacteria. Despite their critical roles in the pathogenesis of phytopathogenic bacteria, the molecular functions and virulence mechanisms of these effectors have been largely unknown. However, recent studies have identified host-interacting proteins and demonstrated that AvrE family effectors can form water-permeable channels in the plant plasma membrane (PM) to create a hydrated and nutrient-rich extracellular space (apoplast) required for disease establishment. Here, we summarize these recent discoveries and highlight open questions related to AvrE-targeted host proteins.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":"26 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phages to the rescue: in situ editing of the gut microbiota","authors":"Charlotte Kamm, Chase L. Beisel","doi":"10.1016/j.tim.2024.09.001","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.001","url":null,"abstract":"<p>The gut microbiome contains numerous bacteria tied to our health. However, genetically modifying this community remains a major challenge. <span><span>Brödel <em>et al</em>.</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> take a critical step by engineering bacteriophages to efficiently deliver gene editors without propagation of the genetic cargo, efficiently introducing edits to bacteria residing in the mouse gut.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":"88 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinformatics challenges for profiling the microbiome in cancer: pitfalls and opportunities","authors":"Nicholas A. Bokulich, Michael S. Robeson","doi":"10.1016/j.tim.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.011","url":null,"abstract":"<p>Increasing evidence suggests that the human microbiome plays an important role in cancer risk and treatment. Untargeted ‘omics’ techniques have accelerated research into microbiome–cancer interactions, supporting the discovery of novel associations and mechanisms. However, these techniques require careful selection and use to avoid biases and other pitfalls. In this essay, we discuss selected challenges involved in the analysis of microbiome data in the context of cancer, including the application of machine learning (ML). We focus on DNA sequencing-based (e.g., metagenomics) methods, but many of the pitfalls and opportunities generalize to other omics technologies as well. We advocate for extended training opportunities, community standards, and best practices for sharing data and code to advance transparency and reproducibility in cancer microbiome research.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":"58 1","pages":""},"PeriodicalIF":15.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}