Roseline Assiah Yao, Jean-Guy Berrin, Lauren S McKee, Bastien Bissaro
{"title":"真菌细胞壁:碳水化合物活性酶的重要性日益提高。","authors":"Roseline Assiah Yao, Jean-Guy Berrin, Lauren S McKee, Bastien Bissaro","doi":"10.1016/j.tim.2025.05.001","DOIUrl":null,"url":null,"abstract":"<p><p>As the interface between the fungal cell and its surroundings, the fungal cell wall (FCW) plays an essential physiological role in a myriad of biological processes. It provides support, protection, and enables material exchange with the environment, playing a key role in microbiome and host-microbe interactions. The fact that FCWs are mainly composed of complex carbohydrates makes carbohydrate-active enzymes (CAZymes) the main players in FCW remodelling and degradation. Despite the biological importance of these processes, our understanding of the underlying enzymology remains limited. In this review, we discuss the role of FCW-active CAZymes in various contexts, including fungal physiology, pathogenesis, human gut microbiomes, and the global carbon cycle, while highlighting knowledge gaps and potential applications in agriculture, biotechnology, and health.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal cell walls: the rising importance of carbohydrate-active enzymes.\",\"authors\":\"Roseline Assiah Yao, Jean-Guy Berrin, Lauren S McKee, Bastien Bissaro\",\"doi\":\"10.1016/j.tim.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the interface between the fungal cell and its surroundings, the fungal cell wall (FCW) plays an essential physiological role in a myriad of biological processes. It provides support, protection, and enables material exchange with the environment, playing a key role in microbiome and host-microbe interactions. The fact that FCWs are mainly composed of complex carbohydrates makes carbohydrate-active enzymes (CAZymes) the main players in FCW remodelling and degradation. Despite the biological importance of these processes, our understanding of the underlying enzymology remains limited. In this review, we discuss the role of FCW-active CAZymes in various contexts, including fungal physiology, pathogenesis, human gut microbiomes, and the global carbon cycle, while highlighting knowledge gaps and potential applications in agriculture, biotechnology, and health.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2025.05.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.05.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fungal cell walls: the rising importance of carbohydrate-active enzymes.
As the interface between the fungal cell and its surroundings, the fungal cell wall (FCW) plays an essential physiological role in a myriad of biological processes. It provides support, protection, and enables material exchange with the environment, playing a key role in microbiome and host-microbe interactions. The fact that FCWs are mainly composed of complex carbohydrates makes carbohydrate-active enzymes (CAZymes) the main players in FCW remodelling and degradation. Despite the biological importance of these processes, our understanding of the underlying enzymology remains limited. In this review, we discuss the role of FCW-active CAZymes in various contexts, including fungal physiology, pathogenesis, human gut microbiomes, and the global carbon cycle, while highlighting knowledge gaps and potential applications in agriculture, biotechnology, and health.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.