Trends in molecular medicine最新文献

筛选
英文 中文
cGAS-STING DNA-sensing in inflammatory bowel diseases. 炎症性肠病中的 cGAS-STING DNA 传感。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-23 DOI: 10.1016/j.molmed.2024.10.002
Georges Dimitrov, Bernhard Ryffel, Dieudonnée Togbe, Valérie Quesniaux
{"title":"cGAS-STING DNA-sensing in inflammatory bowel diseases.","authors":"Georges Dimitrov, Bernhard Ryffel, Dieudonnée Togbe, Valérie Quesniaux","doi":"10.1016/j.molmed.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.10.002","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) are chronic, incurable pathologies with unknown causes, affecting millions of people. Pediatric-onset IBD, starting before the age of 18 years, are increasing, with more aggressive and extensive features than adult-onset IBD. These differences remain largely unexplained. Intestinal mucosal damage, cell death, DNA release from nuclear, mitochondrial, or microbiota sources, and DNA-sensing activating the cGAS-STING pathway may contribute to disease evolution. Increased colonic cGAS and STING are increasingly reported in experimental and human IBD. However, limited knowledge of the mechanisms involved hinders the development of new therapeutic options. Here, we discuss recent advances and unresolved questions regarding DNA release, DNA sensor activation, and the role and therapeutic potential of the cGAS-STING pathway in inflammatory colitis.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Hodgkin lymphoma research. 霍奇金淋巴瘤研究进展。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-22 DOI: 10.1016/j.molmed.2024.10.004
Ralf Küppers
{"title":"Advances in Hodgkin lymphoma research.","authors":"Ralf Küppers","doi":"10.1016/j.molmed.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.10.004","url":null,"abstract":"<p><p>Hodgkin lymphoma (HL) has been and still is the most enigmatic lymphoid malignancy in humans. Since the first molecular analysis of isolated Hodgkin and Reed-Sternberg (HRS) tumor cells of classic HL 30 years ago, substantial advances in our understanding of HL have been made. This review describes the cellular origin of HL, summarizes the current knowledge about the genetic lesions in HRS cells, and highlights the role of Epstein-Barr virus (EBV) in HL pathogenesis. Moreover, the pathobiological roles of altered gene expression and deregulated signaling pathways are discussed and key aspects of the HL microenvironment are presented.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting monoamine oxidases in cancer: advances and opportunities. 以癌症中的单胺氧化酶为靶点:进展与机遇。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-21 DOI: 10.1016/j.molmed.2024.09.010
Jing Wei, Boyang Jason Wu
{"title":"Targeting monoamine oxidases in cancer: advances and opportunities.","authors":"Jing Wei, Boyang Jason Wu","doi":"10.1016/j.molmed.2024.09.010","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.09.010","url":null,"abstract":"<p><p>Monoamine oxidases (MAOs) are a crucial pair of isoenzymes responsible for degrading monoamine neurotransmitters and dietary amines. In addition to extensive studies of their roles in the context of brain functions and disorders over decades, emerging evidence indicates that MAOs are also often dysregulated and associated with clinical outcomes in diverse cancers, with the ability to differentially regulate cancer growth, invasion, metastasis, progression, and therapy response depending on the cancer type. In this review, we summarize recent advances in understanding the clinical relevance, functional importance, and mechanisms of MAOs in a broad range of cancers, and discuss the application and therapeutic benefit of MAO inhibitors (MAOIs) for cancer treatment, highlighting the roles of MAOs as novel regulators, prognostic biomarkers, and therapeutic targets in cancer.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the therapeutic potential of salubrinal for ME/CFS and long-COVID. 评估柳氮磺吡啶对 ME/CFS 和长期 COVID 的治疗潜力。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-21 DOI: 10.1016/j.molmed.2024.10.001
Aseel Warrayat, Ayah Ali, Joulin Waked, Darcy Tocci, Robert C Speth
{"title":"Assessment of the therapeutic potential of salubrinal for ME/CFS and long-COVID.","authors":"Aseel Warrayat, Ayah Ali, Joulin Waked, Darcy Tocci, Robert C Speth","doi":"10.1016/j.molmed.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.10.001","url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating condition with no cure that shares commonality with long-COVID. This review examines current understanding of long-COVID symptoms, characteristics of the affected population, the connection with ME/CFS, and the potential for salubrinal, an agent known for its influence on cellular stress pathways, to mitigate these disorders It also describes the historical development and mechanism of action of salubrinal, to mitigate endoplasmic reticulum (ER)/cellular stress responses, that could potentially contribute to symptom improvement in both ME/CFS and long-COVID patients. Further research and clinical trials are warranted to advance our understanding of the potential role of salubrinal in improving the quality of life for individuals with long-COVID-related ME/CFS symptoms as well as ME/CFS patients.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. 骨关节炎中的骨脑串扰:病理生理学和干预措施。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-21 DOI: 10.1016/j.molmed.2024.09.006
Yilan Tang, Zhiyan Wang, Jin Cao, Yiheng Tu
{"title":"Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions.","authors":"Yilan Tang, Zhiyan Wang, Jin Cao, Yiheng Tu","doi":"10.1016/j.molmed.2024.09.006","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.09.006","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of glucose-6-phosphatase activity in glucose homeostasis and its potential for diabetes therapy. 葡萄糖-6-磷酸酶活性在葡萄糖稳态中的作用及其在糖尿病治疗中的潜力。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-18 DOI: 10.1016/j.molmed.2024.09.005
Lay Shuen Tan, Hwee Hui Lau, Essam M Abdelalim, Chin Meng Khoo, Richard M O'Brien, E Shyong Tai, Adrian Kee Keong Teo
{"title":"The role of glucose-6-phosphatase activity in glucose homeostasis and its potential for diabetes therapy.","authors":"Lay Shuen Tan, Hwee Hui Lau, Essam M Abdelalim, Chin Meng Khoo, Richard M O'Brien, E Shyong Tai, Adrian Kee Keong Teo","doi":"10.1016/j.molmed.2024.09.005","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.09.005","url":null,"abstract":"<p><p>Glucose-6-phosphatase catalytic subunit (G6PC)1 and G6PC2 are crucial for glucose metabolism, regulating processes like glycolysis, gluconeogenesis, and glycogenolysis. Despite their structural and functional similarities, G6PC1 and G6PC2 exhibit distinct tissue-specific expression patterns, G6P hydrolysis kinetics, and physiological functions. This review provides a comprehensive overview of their enzymology and distinct roles in glucose homeostasis. We examine how inactivating mutations in G6PC1 lead to glycogen storage disease, and how elevated G6PC1 and G6PC2 expression can affect the incidence of diabetic complications, risk for type 2 diabetes mellitus (T2DM) and various cancers. We also discuss the potential of inhibiting G6PC1 and G6PC2 to protect against complications from elevated blood glucose levels, and highlight drug development efforts targeting G6PC1 and G6PC2, and the therapeutic potential of inhibitors for disease prevention.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular evolution of central nervous system metastasis and therapeutic implications. 中枢神经系统转移的分子演化及治疗意义。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-17 DOI: 10.1016/j.molmed.2024.09.008
David Gritsch, Priscilla K Brastianos
{"title":"Molecular evolution of central nervous system metastasis and therapeutic implications.","authors":"David Gritsch, Priscilla K Brastianos","doi":"10.1016/j.molmed.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.09.008","url":null,"abstract":"<p><p>The increasing prevalence and poor prognosis of central nervous system (CNS) metastases pose a significant challenge in oncology, necessitating improved therapeutic strategies. Recent research has shed light on the complex genomic landscape of brain metastases, identifying unique and potentially actionable genetic alterations. These insights offer new avenues for targeted therapy, highlighting the potential of precision medicine approaches in treating CNS metastases. However, translating these discoveries into clinical practice requires overcoming challenges such as availability of tissue for characterization, access to molecular testing, drug delivery across the blood-brain barrier (BBB) and addressing intra- and intertumoral genetic heterogeneity. This review explores novel insights into the evolution of CNS metastases, the molecular mechanisms underlying their development, and implications for therapeutic interventions.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging roles of cyclin-dependent kinase 7 in health and diseases. 细胞周期蛋白依赖性激酶 7 在健康和疾病中的新作用。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-15 DOI: 10.1016/j.molmed.2024.09.004
Mahder Dawit Belew, Jingrui Chen, Zhaokang Cheng
{"title":"Emerging roles of cyclin-dependent kinase 7 in health and diseases.","authors":"Mahder Dawit Belew, Jingrui Chen, Zhaokang Cheng","doi":"10.1016/j.molmed.2024.09.004","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.09.004","url":null,"abstract":"<p><p>Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pig models for translational Duchenne muscular dystrophy research. 用于杜兴氏肌肉萎缩症转化研究的猪模型。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-01 Epub Date: 2024-05-14 DOI: 10.1016/j.molmed.2024.04.013
Michael Stirm, Nikolai Klymiuk, Hiroshi Nagashima, Christian Kupatt, Eckhard Wolf
{"title":"Pig models for translational Duchenne muscular dystrophy research.","authors":"Michael Stirm, Nikolai Klymiuk, Hiroshi Nagashima, Christian Kupatt, Eckhard Wolf","doi":"10.1016/j.molmed.2024.04.013","DOIUrl":"10.1016/j.molmed.2024.04.013","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked DMD gene, resulting in the absence of dystrophin, progressive muscle degeneration, and heart failure. Genetically tailored pig models resembling human DMD mutations recapitulate the biochemical, clinical, and pathological hallmarks of DMD with an accelerated disease progression compared to human patients. DMD pigs have been used to evaluate therapeutic concepts such as gene editing to reframe a disrupted DMD reading frame or the delivery of artificial chromosome vectors carrying the complete DMD gene. Moreover, DMD pigs have been instrumental in validating new diagnostic modalities such as multispectral optoacoustic tomography (MSOT) for non-invasive monitoring of disease progression. DMD pigs may thus help to bridge the gap between proof-of-concept studies in cellular or rodent models and clinical studies in patients.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"950-964"},"PeriodicalIF":12.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does glial lipid dysregulation alter sleep in Alzheimer's and Parkinson's disease? 神经胶质脂质失调会改变阿尔茨海默氏症和帕金森氏症患者的睡眠吗?
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2024-10-01 Epub Date: 2024-05-15 DOI: 10.1016/j.molmed.2024.04.010
Lindsey D Goodman, Matthew J Moulton, Guang Lin, Hugo J Bellen
{"title":"Does glial lipid dysregulation alter sleep in Alzheimer's and Parkinson's disease?","authors":"Lindsey D Goodman, Matthew J Moulton, Guang Lin, Hugo J Bellen","doi":"10.1016/j.molmed.2024.04.010","DOIUrl":"10.1016/j.molmed.2024.04.010","url":null,"abstract":"<p><p>In this opinion article, we discuss potential connections between sleep disturbances observed in Alzheimer's disease (AD) and Parkinson's disease (PD) and the dysregulation of lipids in the brain. Research using Drosophila has highlighted the role of glial-mediated lipid metabolism in sleep and diurnal rhythms. Relevant to AD, the formation of lipid droplets in glia, which occurs in response to elevated neuronal reactive oxygen species (ROS), is required for sleep. In disease models, this process is disrupted, arguing a connection to sleep dysregulation. Relevant to PD, the degradation of neuronally synthesized glucosylceramides by glia requires glucocerebrosidase (GBA, a PD-associated risk factor) and this regulates sleep. Loss of GBA in glia causes an accumulation of glucosylceramides and neurodegeneration. Overall, research primarily using Drosophila has highlighted how dysregulation of glial lipid metabolism may underlie sleep disturbances in neurodegenerative diseases.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"913-923"},"PeriodicalIF":12.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信