Tissue Engineering. Part B, Reviews最新文献

筛选
英文 中文
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Tissue Engineering Part B. 罗莎琳德-富兰克林学会自豪地宣布 2023 年组织工程 B 部分获奖者。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-10-01 DOI: 10.1089/ten.teb.2024.17785.rfs2023
Johnna S Temenoff
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>Tissue Engineering Part B</i>.","authors":"Johnna S Temenoff","doi":"10.1089/ten.teb.2024.17785.rfs2023","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.17785.rfs2023","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"30 5","pages":"491"},"PeriodicalIF":5.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Three-Dimensional-Printed Hydrogels in Bone Tissue Engineering. 三维打印水凝胶在骨组织工程中的应用。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-10-01 Epub Date: 2024-01-17 DOI: 10.1089/ten.TEB.2023.0218
Chengcheng Zhang, Tengbin Shi, Dingwei Wu, Dingxiang Hu, Wenwen Li, Jie Fei, Wenge Liu
{"title":"The Application of Three-Dimensional-Printed Hydrogels in Bone Tissue Engineering.","authors":"Chengcheng Zhang, Tengbin Shi, Dingwei Wu, Dingxiang Hu, Wenwen Li, Jie Fei, Wenge Liu","doi":"10.1089/ten.TEB.2023.0218","DOIUrl":"10.1089/ten.TEB.2023.0218","url":null,"abstract":"<p><p>Bone defects are a prevalent clinical issue that presents a serious medical challenge. Bone tissue engineering (BTE) has emerged as an effective approach for treating large bone defects. Hydrogels, as hydrophilic three-dimensional polymers, are recognized as suitable material for BTE due to their excellent biocompatibility and degradability. However, the submicron and nanoporous structure of hydrogels limits the survival of osteoblasts, hindering bone tissue regeneration. In recent years, 3D printing technology has attracted appreciable attention. The use of hydrogels as 3D-printed ink facilitates the printing of hydrogels in any desired shape, enabling personalized or more complex requirements. This article provides a systematic review of the latest applications of 3D-printed hydrogels in BTE. These hydrogels serve as a multifunctional platform for the next generation technology in treating bone defects. The advantages and limitations of 3D-printed hydrogels in BTE are discussed, and future research directions are explored. This review can form the basis for future hydrogel design.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"492-506"},"PeriodicalIF":5.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Structure, Biology, and Mechanical Function of Tendon/Ligament-Bone Interfaces. 肌腱/韧带-骨界面的结构、生物学和机械功能。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-10-01 Epub Date: 2024-03-05 DOI: 10.1089/ten.TEB.2023.0295
Huizhi Wang, Kaixin He, Cheng-Kung Cheng
{"title":"The Structure, Biology, and Mechanical Function of Tendon/Ligament-Bone Interfaces.","authors":"Huizhi Wang, Kaixin He, Cheng-Kung Cheng","doi":"10.1089/ten.TEB.2023.0295","DOIUrl":"10.1089/ten.TEB.2023.0295","url":null,"abstract":"<p><p>After tendon or ligament reconstruction, the interface between the hard bone and soft connective tissue is considerably weakened and is difficult to restore through healing. The tendon/ligament-bone interface is mechanically the weakest point under tensile loading and is often the source of various postoperative complications, such as bone resorption and graft laxity. A comprehensive understanding of the macro- and microfeatures of the native tendon/ligament-bone interface would be beneficial for developing strategies for regenerating the tissue. This article discusses the structural, biological, and mechanical features of the tendon/ligament-bone interfaces and how these can be affected by aging and loading conditions.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"545-558"},"PeriodicalIF":5.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Pathological Factors Involved in Current In Vitro Atherosclerotic Models. 当前体外动脉粥样硬化模型中的病理因素
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-10-01 Epub Date: 2024-03-01 DOI: 10.1089/ten.TEB.2023.0272
Yuxin Bao, Hangyu Zhang, Danbo Wang, Peishi Yan, Shuai Shao, Zhengyao Zhang, Bo Liu, Na Li
{"title":"The Pathological Factors Involved in Current <i>In Vitro</i> Atherosclerotic Models.","authors":"Yuxin Bao, Hangyu Zhang, Danbo Wang, Peishi Yan, Shuai Shao, Zhengyao Zhang, Bo Liu, Na Li","doi":"10.1089/ten.TEB.2023.0272","DOIUrl":"10.1089/ten.TEB.2023.0272","url":null,"abstract":"<p><p>Cardiovascular disease stemmed from atherosclerosis (AS) is well recognized to be the predominant cause of global death. To comprehensively clarify the pathogenesis of AS, exploit effective drugs, as well as develop therapeutic solutions, various atherosclerotic models were constructed <i>in vitro</i> and widely utilized by the scientific community. Compared with animal models, the <i>in vitro</i> atherosclerotic models play a prominent role not only in the targeted research of single pathological factor related to AS in the human derived system, but also in the combined study on multipathological factors leading to AS, thereby contributing tremendously to the in-depth elucidation of atherosclerotic pathological process. In the current review, a variety of pathological factors incorporated into the existing atherosclerotic models <i>in vitro</i> are broadly elaborated, including the pathological mechanism, <i>in vitro</i> simulation approaches, and the desired improvement perspectives for reproducing each pathological factor. In addition, this review also summarizes the advantages and disadvantages of current atherosclerotic models as well as their potential functionality. Finally, the promising aspects for future atherosclerotic models <i>in vitro</i> with potential advances are also discussed.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"530-544"},"PeriodicalIF":5.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. 用于声带褶皱再生和长期增厚的注射生物材料的发展趋势。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-23 DOI: 10.1089/ten.TEB.2024.0134
Mika Brown, Hideaki Okuyama, Masaru Yamashita, Maryam Tabrizian, Nicole Y K Li-Jessen
{"title":"Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation.","authors":"Mika Brown, Hideaki Okuyama, Masaru Yamashita, Maryam Tabrizian, Nicole Y K Li-Jessen","doi":"10.1089/ten.TEB.2024.0134","DOIUrl":"10.1089/ten.TEB.2024.0134","url":null,"abstract":"<p><p>Human vocal folds (VFs), a pair of small, soft tissues in the larynx, have a layered mucosal structure with unique mechanical strength to support high-level tissue deformation by phonation. Severe pathological changes to VF have causes including surgery, trauma, age-related atrophy, and radiation, and lead to partial or complete communication loss and difficulty in breathing and swallowing. VF glottal insufficiency requires injectable VF biomaterials such as hyaluronan, calcium hydroxyapatite, and autologous fat to augment VF functions. Although these biomaterials provide an effective short-term solution, significant variations in patient response and requirements of repeat reinjection remain notable challenges in clinical practice. Tissue engineering strategies have been actively explored in the search of an injectable biomaterial that possesses the capacity to match native tissue's material properties while promoting permanent tissue regeneration. This review aims to assess the current status of biomaterial development in VF tissue engineering. The focus will be on examining state-of-the-art techniques including modification with bioactive molecules, cell encapsulation, composite materials, and <i>in situ</i> crosslinking with click chemistry. We will discuss potential opportunities that can further leverage these engineering techniques in the advancement of VF injectable biomaterials. Impact Statement Injectable vocal fold (VF) biomaterials augment tissue function through minimally invasive procedures, yet there remains a need for long-term VF reparation. This article reviews cutting-edge research in VF biomaterial development to propose safe and effective tissue engineering strategies for improving regenerative outcomes. Special focus is paid to methods to enhance bioactivity and achieve tissue-mimicking mechanical properties, longer <i>in situ</i> stability, and inherent biomaterial bioactivity.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties. 推进软骨组织工程:三维生物打印方法和生物墨水特性综述。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-23 DOI: 10.1089/ten.TEB.2024.0168
Gabriele Boretti, Arsalan Amirfallah, Kyle J Edmunds, Helena Hamzehpour, Olafur E Sigurjonsson
{"title":"Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties.","authors":"Gabriele Boretti, Arsalan Amirfallah, Kyle J Edmunds, Helena Hamzehpour, Olafur E Sigurjonsson","doi":"10.1089/ten.TEB.2024.0168","DOIUrl":"https://doi.org/10.1089/ten.TEB.2024.0168","url":null,"abstract":"<p><p>Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging diabetes therapies: Regenerating pancreatic β cells. 新兴糖尿病疗法:再生胰腺β细胞。
IF 6.4 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-14 DOI: 10.1089/ten.teb.2024.0041
Haojie Zhang,Yaxin Wei,Yubo Wang,Jialin Liang,Yifan Hou,Xiaobo Nie,Junqing Hou
{"title":"Emerging diabetes therapies: Regenerating pancreatic β cells.","authors":"Haojie Zhang,Yaxin Wei,Yubo Wang,Jialin Liang,Yifan Hou,Xiaobo Nie,Junqing Hou","doi":"10.1089/ten.teb.2024.0041","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.0041","url":null,"abstract":"The incidence of diabetes mellitus (DM) is steadily increasing annually, with 537 million diabetic patients as of 2021. Restoring diminished β cell mass or impaired islet function is crucial in treating DM, particularly type 1 diabetes mellitus (T1DM). However, the regenerative capacity of islet β cells, which primarily produce insulin, is severely limited, and natural regeneration is only observed in young rodents or children. Hence, there is an urgent need to develop advanced therapeutic approaches that can regenerate endogenous β cells or replace them with stem cell (SC)-derived or engineered β-like cells. Current strategies for treating insulin-dependent DM mainly include promoting the self-replication of endogenous β cells, inducing SC differentiation, reprogramming non-β cells into β-like cells, and generating pancreatic-like organoids through cell-based intervention. In this Review, we discuss the current state of the art in these approaches, describe associated challenges, propose potential solutions, and highlight ongoing efforts to optimize β cell or islet transplantation and related clinical trials. These effective cell-based therapies will generate a sustainable source of functional β cells for transplantation and lay strong foundations for future curative treatments for DM.","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"17 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Stent Re-Endothelialization Strategies: Cells, Extracellular Matrix, and Extracellular Vesicles. 支架内再内皮化策略:细胞、ECM 和细胞外囊泡。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-12 DOI: 10.1089/ten.TEB.2024.0178
Min-Kyu Kang, Seon-Hee Heo, Jeong-Kee Yoon
{"title":"In-Stent Re-Endothelialization Strategies: Cells, Extracellular Matrix, and Extracellular Vesicles.","authors":"Min-Kyu Kang, Seon-Hee Heo, Jeong-Kee Yoon","doi":"10.1089/ten.TEB.2024.0178","DOIUrl":"10.1089/ten.TEB.2024.0178","url":null,"abstract":"<p><p>Arterial stenosis caused by atherosclerosis often requires stent implantation to increase the patency of target artery. However, such external devices often lead to in-stent restenosis due to inadequate re-endothelialization and subsequent inflammatory responses. Therefore, re-endothelialization strategies after stent implantation have been developed to enhance endothelial cell recruitment or to capture circulating endothelial progenitor cells. Notably, recent research indicates that coating stent surfaces with biogenic materials enhances the long-term safety of implantation, markedly diminishing the risk of in-stent restenosis. In this review, we begin by describing the pathophysiology of coronary artery disease and in-stent restenosis. Then, we review the characteristics and materials of existing stents used in clinical practice. Lastly, we explore biogenic materials aimed at accelerating re-endothelialization, including extracellular matrix, cells, and extracellular vesicles. This review helps overcome the limitations of current stents for cardiovascular disease and outlines the next phase of research and development.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced Pluripotent Stem Cell-Derived Cardiomyocytes: From Regulatory Status to Clinical Translation. 诱导多能干细胞衍生的心肌细胞:从监管状态到临床转化。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-01 Epub Date: 2024-02-19 DOI: 10.1089/ten.TEB.2023.0080
Catarina S P Soares, Maria H L Ribeiro
{"title":"Induced Pluripotent Stem Cell-Derived Cardiomyocytes: From Regulatory Status to Clinical Translation.","authors":"Catarina S P Soares, Maria H L Ribeiro","doi":"10.1089/ten.TEB.2023.0080","DOIUrl":"10.1089/ten.TEB.2023.0080","url":null,"abstract":"<p><p>Cardiovascular diseases, considered the deadliest worldwide by the World Health Organization (WHO), lack effective therapies for regenerating cardiomyocytes. With their self-renewal and pluripotency capabilities, stem cell therapies are increasingly used in precision medicine. Induced pluripotent stem cells (iPSCs) are a promising alternative to embryonic stem cells. Good Manufacturing Practice (GMP) principles are not yet adapted for large-scale production of iPSCs. Additionally, the quality risk for iPSC products may not always be possible to eliminate, potentially jeopardizing the health of patients. This review aims to identify critical quality attributes (CQAs) for iPSC-derived cardiomyocytes (iPSC-CMs) for the development of cardiovascular therapy to ensure compliance with regulations and safety for patients. To attain these goals, the literature review was conducted with articles related to iPSCs and iPSC-CM therapies, legislation, and regulatory guidelines of the European Medicines Agency (EMA), Food and Drug Administration (FDA), and Pharmaceuticals and Medical Devices Agency (PMDA). In conclusion, additional regulations and guidelines are needed to monitor differentiation, maturation, and tumorigenicity. GMP-compliant cell banks and fast-track approval systems may increase accessibility for patients.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"436-447"},"PeriodicalIF":5.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Considerations on Large-Scale Cultured Meat Production. 大规模培养肉类生产的工程考虑因素。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-01 Epub Date: 2024-02-27 DOI: 10.1089/ten.TEB.2023.0184
Sangbae Park, Yeonggeol Hong, Sunho Park, Woochan Kim, Yonghyun Gwon, Harshita Sharma, Kyoung-Je Jang, Jangho Kim
{"title":"Engineering Considerations on Large-Scale Cultured Meat Production.","authors":"Sangbae Park, Yeonggeol Hong, Sunho Park, Woochan Kim, Yonghyun Gwon, Harshita Sharma, Kyoung-Je Jang, Jangho Kim","doi":"10.1089/ten.TEB.2023.0184","DOIUrl":"10.1089/ten.TEB.2023.0184","url":null,"abstract":"<p><p>In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production. Such engineering considerations have the potential for advancements in cultured meat production by providing innovative and effective solutions to the prevailing challenges. In this review, we discuss how engineering strategies have been utilized to advance cultured meat technology by categorizing the production processes of cultured meat into three distinct steps: (1) cell preparation; (2) cultured meat fabrication; and (3) cultured meat maturation. For each step, we provide a comprehensive discussion of the recent progress and its implications. In particular, we focused on the engineering considerations involved in each step of cultured meat production, with specific emphasis on large-scale production.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"423-435"},"PeriodicalIF":5.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138805277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信