{"title":"Induced Pluripotent Stem Cell-Derived Cardiomyocytes: From Regulatory Status to Clinical Translation.","authors":"Catarina S P Soares, Maria H L Ribeiro","doi":"10.1089/ten.TEB.2023.0080","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases, considered the deadliest worldwide by the World Health Organization (WHO), lack effective therapies for regenerating cardiomyocytes. With their self-renewal and pluripotency capabilities, stem cell therapies are increasingly used in precision medicine. Induced pluripotent stem cells (iPSCs) are a promising alternative to embryonic stem cells. Good Manufacturing Practice (GMP) principles are not yet adapted for large-scale production of iPSCs. Additionally, the quality risk for iPSC products may not always be possible to eliminate, potentially jeopardizing the health of patients. This review aims to identify critical quality attributes (CQAs) for iPSC-derived cardiomyocytes (iPSC-CMs) for the development of cardiovascular therapy to ensure compliance with regulations and safety for patients. To attain these goals, the literature review was conducted with articles related to iPSCs and iPSC-CM therapies, legislation, and regulatory guidelines of the European Medicines Agency (EMA), Food and Drug Administration (FDA), and Pharmaceuticals and Medical Devices Agency (PMDA). In conclusion, additional regulations and guidelines are needed to monitor differentiation, maturation, and tumorigenicity. GMP-compliant cell banks and fast-track approval systems may increase accessibility for patients.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2023.0080","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases, considered the deadliest worldwide by the World Health Organization (WHO), lack effective therapies for regenerating cardiomyocytes. With their self-renewal and pluripotency capabilities, stem cell therapies are increasingly used in precision medicine. Induced pluripotent stem cells (iPSCs) are a promising alternative to embryonic stem cells. Good Manufacturing Practice (GMP) principles are not yet adapted for large-scale production of iPSCs. Additionally, the quality risk for iPSC products may not always be possible to eliminate, potentially jeopardizing the health of patients. This review aims to identify critical quality attributes (CQAs) for iPSC-derived cardiomyocytes (iPSC-CMs) for the development of cardiovascular therapy to ensure compliance with regulations and safety for patients. To attain these goals, the literature review was conducted with articles related to iPSCs and iPSC-CM therapies, legislation, and regulatory guidelines of the European Medicines Agency (EMA), Food and Drug Administration (FDA), and Pharmaceuticals and Medical Devices Agency (PMDA). In conclusion, additional regulations and guidelines are needed to monitor differentiation, maturation, and tumorigenicity. GMP-compliant cell banks and fast-track approval systems may increase accessibility for patients.
期刊介绍:
Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.