Tissue Engineering. Part B, Reviews最新文献

筛选
英文 中文
The Pathological Factors Involved in Current In Vitro Atherosclerotic Models. 当前体外动脉粥样硬化模型中的病理因素
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-10-01 Epub Date: 2024-03-01 DOI: 10.1089/ten.TEB.2023.0272
Yuxin Bao, Hangyu Zhang, Danbo Wang, Peishi Yan, Shuai Shao, Zhengyao Zhang, Bo Liu, Na Li
{"title":"The Pathological Factors Involved in Current <i>In Vitro</i> Atherosclerotic Models.","authors":"Yuxin Bao, Hangyu Zhang, Danbo Wang, Peishi Yan, Shuai Shao, Zhengyao Zhang, Bo Liu, Na Li","doi":"10.1089/ten.TEB.2023.0272","DOIUrl":"10.1089/ten.TEB.2023.0272","url":null,"abstract":"<p><p>Cardiovascular disease stemmed from atherosclerosis (AS) is well recognized to be the predominant cause of global death. To comprehensively clarify the pathogenesis of AS, exploit effective drugs, as well as develop therapeutic solutions, various atherosclerotic models were constructed <i>in vitro</i> and widely utilized by the scientific community. Compared with animal models, the <i>in vitro</i> atherosclerotic models play a prominent role not only in the targeted research of single pathological factor related to AS in the human derived system, but also in the combined study on multipathological factors leading to AS, thereby contributing tremendously to the in-depth elucidation of atherosclerotic pathological process. In the current review, a variety of pathological factors incorporated into the existing atherosclerotic models <i>in vitro</i> are broadly elaborated, including the pathological mechanism, <i>in vitro</i> simulation approaches, and the desired improvement perspectives for reproducing each pathological factor. In addition, this review also summarizes the advantages and disadvantages of current atherosclerotic models as well as their potential functionality. Finally, the promising aspects for future atherosclerotic models <i>in vitro</i> with potential advances are also discussed.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. 用于声带褶皱再生和长期增厚的注射生物材料的发展趋势。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-23 DOI: 10.1089/ten.TEB.2024.0134
Mika Brown, Hideaki Okuyama, Masaru Yamashita, Maryam Tabrizian, Nicole Y K Li-Jessen
{"title":"Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation.","authors":"Mika Brown, Hideaki Okuyama, Masaru Yamashita, Maryam Tabrizian, Nicole Y K Li-Jessen","doi":"10.1089/ten.TEB.2024.0134","DOIUrl":"10.1089/ten.TEB.2024.0134","url":null,"abstract":"<p><p>Human vocal folds (VFs), a pair of small, soft tissues in the larynx, have a layered mucosal structure with unique mechanical strength to support high-level tissue deformation by phonation. Severe pathological changes to VF have causes including surgery, trauma, age-related atrophy, and radiation, and lead to partial or complete communication loss and difficulty in breathing and swallowing. VF glottal insufficiency requires injectable VF biomaterials such as hyaluronan, calcium hydroxyapatite, and autologous fat to augment VF functions. Although these biomaterials provide an effective short-term solution, significant variations in patient response and requirements of repeat reinjection remain notable challenges in clinical practice. Tissue engineering strategies have been actively explored in the search of an injectable biomaterial that possesses the capacity to match native tissue's material properties while promoting permanent tissue regeneration. This review aims to assess the current status of biomaterial development in VF tissue engineering. The focus will be on examining state-of-the-art techniques including modification with bioactive molecules, cell encapsulation, composite materials, and <i>in situ</i> crosslinking with click chemistry. We will discuss potential opportunities that can further leverage these engineering techniques in the advancement of VF injectable biomaterials. Impact Statement Injectable vocal fold (VF) biomaterials augment tissue function through minimally invasive procedures, yet there remains a need for long-term VF reparation. This article reviews cutting-edge research in VF biomaterial development to propose safe and effective tissue engineering strategies for improving regenerative outcomes. Special focus is paid to methods to enhance bioactivity and achieve tissue-mimicking mechanical properties, longer <i>in situ</i> stability, and inherent biomaterial bioactivity.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties. 推进软骨组织工程:三维生物打印方法和生物墨水特性综述。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-23 DOI: 10.1089/ten.TEB.2024.0168
Gabriele Boretti, Arsalan Amirfallah, Kyle J Edmunds, Helena Hamzehpour, Olafur E Sigurjonsson
{"title":"Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties.","authors":"Gabriele Boretti, Arsalan Amirfallah, Kyle J Edmunds, Helena Hamzehpour, Olafur E Sigurjonsson","doi":"10.1089/ten.TEB.2024.0168","DOIUrl":"https://doi.org/10.1089/ten.TEB.2024.0168","url":null,"abstract":"<p><p>Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging diabetes therapies: Regenerating pancreatic β cells. 新兴糖尿病疗法:再生胰腺β细胞。
IF 6.4 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-14 DOI: 10.1089/ten.teb.2024.0041
Haojie Zhang,Yaxin Wei,Yubo Wang,Jialin Liang,Yifan Hou,Xiaobo Nie,Junqing Hou
{"title":"Emerging diabetes therapies: Regenerating pancreatic β cells.","authors":"Haojie Zhang,Yaxin Wei,Yubo Wang,Jialin Liang,Yifan Hou,Xiaobo Nie,Junqing Hou","doi":"10.1089/ten.teb.2024.0041","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.0041","url":null,"abstract":"The incidence of diabetes mellitus (DM) is steadily increasing annually, with 537 million diabetic patients as of 2021. Restoring diminished β cell mass or impaired islet function is crucial in treating DM, particularly type 1 diabetes mellitus (T1DM). However, the regenerative capacity of islet β cells, which primarily produce insulin, is severely limited, and natural regeneration is only observed in young rodents or children. Hence, there is an urgent need to develop advanced therapeutic approaches that can regenerate endogenous β cells or replace them with stem cell (SC)-derived or engineered β-like cells. Current strategies for treating insulin-dependent DM mainly include promoting the self-replication of endogenous β cells, inducing SC differentiation, reprogramming non-β cells into β-like cells, and generating pancreatic-like organoids through cell-based intervention. In this Review, we discuss the current state of the art in these approaches, describe associated challenges, propose potential solutions, and highlight ongoing efforts to optimize β cell or islet transplantation and related clinical trials. These effective cell-based therapies will generate a sustainable source of functional β cells for transplantation and lay strong foundations for future curative treatments for DM.","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Stent Re-Endothelialization Strategies: Cells, Extracellular Matrix, and Extracellular Vesicles. 支架内再内皮化策略:细胞、ECM 和细胞外囊泡。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-09-12 DOI: 10.1089/ten.TEB.2024.0178
Min-Kyu Kang, Seon-Hee Heo, Jeong-Kee Yoon
{"title":"In-Stent Re-Endothelialization Strategies: Cells, Extracellular Matrix, and Extracellular Vesicles.","authors":"Min-Kyu Kang, Seon-Hee Heo, Jeong-Kee Yoon","doi":"10.1089/ten.TEB.2024.0178","DOIUrl":"10.1089/ten.TEB.2024.0178","url":null,"abstract":"<p><p>Arterial stenosis caused by atherosclerosis often requires stent implantation to increase the patency of target artery. However, such external devices often lead to in-stent restenosis due to inadequate re-endothelialization and subsequent inflammatory responses. Therefore, re-endothelialization strategies after stent implantation have been developed to enhance endothelial cell recruitment or to capture circulating endothelial progenitor cells. Notably, recent research indicates that coating stent surfaces with biogenic materials enhances the long-term safety of implantation, markedly diminishing the risk of in-stent restenosis. In this review, we begin by describing the pathophysiology of coronary artery disease and in-stent restenosis. Then, we review the characteristics and materials of existing stents used in clinical practice. Lastly, we explore biogenic materials aimed at accelerating re-endothelialization, including extracellular matrix, cells, and extracellular vesicles. This review helps overcome the limitations of current stents for cardiovascular disease and outlines the next phase of research and development.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surgical Therapy and Tissue Engineering for Meniscal Repair. 半月板修复的手术疗法和组织工程学。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-21 DOI: 10.1089/ten.TEB.2024.0060
Hao Wang, Jie Wu, Liupu Yang, Shuyun Liu, Xiang Sui, Quanyi Guo, Mingxue Chen
{"title":"Surgical Therapy and Tissue Engineering for Meniscal Repair.","authors":"Hao Wang, Jie Wu, Liupu Yang, Shuyun Liu, Xiang Sui, Quanyi Guo, Mingxue Chen","doi":"10.1089/ten.TEB.2024.0060","DOIUrl":"10.1089/ten.TEB.2024.0060","url":null,"abstract":"<p><p>Meniscal damage is one of the prevalent causes of knee pain, swelling, instability, and functional compromise, frequently culminating in osteoarthritis (OA). Timely and appropriate interventions are crucial to relieve symptoms and prevent or delay the onset of OA. Contemporary surgical treatments include total or partial meniscectomy, meniscal repair, allograft meniscal transplantation, and synthetic meniscal implants, but each presents its specific limitations. Recently, regenerative medicine and tissue engineering have emerged as promising fields, offering innovative prospects for meniscal regeneration and repair. This review delineates current surgical methods, elucidating their specific indications, advantages, and disadvantages. Concurrently, it delves into state-of-the-art tissue engineering techniques aimed at the functional regenerative repair of meniscus. Recommendations for future research and clinical practice are also provided.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. 探讨破骨细胞系细胞在骨组织工程中的作用。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-19 DOI: 10.1089/ten.TEB.2024.0126
Eoin J Devoy, Erfan Jabari, George Kotsanos, Robert H Choe, John P Fisher
{"title":"An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering.","authors":"Eoin J Devoy, Erfan Jabari, George Kotsanos, Robert H Choe, John P Fisher","doi":"10.1089/ten.TEB.2024.0126","DOIUrl":"10.1089/ten.TEB.2024.0126","url":null,"abstract":"<p><p>Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Cell Targeting for Cardiovascular Tissue Engineering. 用于心血管组织工程的磁性细胞靶向。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-19 DOI: 10.1089/ten.TEB.2024.0103
Akankshya Shradhanjali, Jayne T Wolfe, Brandon J Tefft
{"title":"Magnetic Cell Targeting for Cardiovascular Tissue Engineering.","authors":"Akankshya Shradhanjali, Jayne T Wolfe, Brandon J Tefft","doi":"10.1089/ten.TEB.2024.0103","DOIUrl":"10.1089/ten.TEB.2024.0103","url":null,"abstract":"<p><p>There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites. It is regarded as a relatively straightforward and safe approach for a wide range of therapeutic applications. This review discusses the latest advancements and approaches in magnetic cell targeting using endocytosed and surface-bound magnetic nanoparticles as well as <i>in vivo</i> tracking using magnetic resonance imaging (MRI). The most common form of magnetic nanoparticles is superparamagnetic iron oxide nanoparticles (SPION). The biodegradable and biocompatible properties of these magnetically responsive particles and capacity for rapid endocytosis into cells make them a breakthrough in targeted therapy. This review further discusses specific applications of magnetic targeting approaches in cardiovascular tissue engineering including myocardial regeneration, therapeutic angiogenesis, and endothelialization of implantable cardiovascular devices.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Microenvironment of Solid Tumors: Components and Current Challenges of Tumor-on-a-Chip Models. 实体瘤的微环境:芯片上肿瘤模型的组成和当前挑战。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-07 DOI: 10.1089/ten.TEB.2024.0088
Ilva de Fátima Souza, João Paulo de Jesus Vieira, Elton Diêgo Bonifácio, Bethânia Alves de Avelar Freitas, Libardo Andres Gonzalez Torres
{"title":"The Microenvironment of Solid Tumors: Components and Current Challenges of Tumor-on-a-Chip Models.","authors":"Ilva de Fátima Souza, João Paulo de Jesus Vieira, Elton Diêgo Bonifácio, Bethânia Alves de Avelar Freitas, Libardo Andres Gonzalez Torres","doi":"10.1089/ten.TEB.2024.0088","DOIUrl":"10.1089/ten.TEB.2024.0088","url":null,"abstract":"<p><p>Solid tumors represent the most common type of cancer in humans and are classified into sarcomas, lymphomas, and carcinomas based on the originating cells. Among these, carcinomas, which arise from epithelial and glandular cells lining the body's tissues, are the most prevalent. Around the world, a significant increase in the incidence of solid tumors is observed during recent years. In this context, efforts to discover more effective cancer treatments have led to a deeper understanding of the tumor microenvironment (TME) and its components. Currently, the interactions between cancer cells and elements of the TME are being intensely investigated. Remarkable progress in research is noted, largely owing to the development of advanced <i>in vitro</i> models, such as tumor-on-a-chip models that assist in understanding and ultimately discovering new effective treatments for a specific type of cancer. The purpose of this article is to provide a review of the TME and cancer cell components, along with the advances on tumor-on-a-chip models designed to mimic tumors, offering a perspective on the current state of the art. Recent studies using this kind of microdevices that reproduce the TME have allowed a better understanding of the cancer and its treatments. Nevertheless, current applications of this technology present some limitations that must be overcome to achieve a broad application by researchers looking for a deeper knowledge of cancer and new strategies to improve current therapies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing Trends and Bibliometric Study in Tissue Engineering for Rotator Cuff Injuries. 组织工程治疗肩袖损伤的可视化趋势和文献计量学研究。
IF 5.1 2区 医学
Tissue Engineering. Part B, Reviews Pub Date : 2024-08-07 DOI: 10.1089/ten.TEB.2024.0085
Zhen Yang, Qiyuan Lin, Yudi Niu, Mengze Sun, Fanfan Zhou, Jianhao Lin, Dan Xing
{"title":"Visualizing Trends and Bibliometric Study in Tissue Engineering for Rotator Cuff Injuries.","authors":"Zhen Yang, Qiyuan Lin, Yudi Niu, Mengze Sun, Fanfan Zhou, Jianhao Lin, Dan Xing","doi":"10.1089/ten.TEB.2024.0085","DOIUrl":"10.1089/ten.TEB.2024.0085","url":null,"abstract":"<p><p>This research is dedicated to uncovering the evolving trends, progressive developments, and principal research themes in tissue engineering and regenerative medicine for rotator cuff injuries, which spans the past two decades. This article leverages visualization methodology to provide a clear and comprehensive portrayal of the dynamic landscape within the field. We compiled 758 research entries centered on the application of tissue engineering and regenerative medicine in treating rotator cuff injuries, drawing from the Web of Science Core Collection database and covering the period from 2003 to 2023. Analytical tools such as VOSviewer, CiteSpace, and GraphPad Prism were used. We conducted comprehensive analyses to discern the general characteristics, historical evolution, key literature, and pivotal keywords within this research field. This comprehensive analysis enabled us to identify emerging focal points and current trends in the application of tissue engineering and regenerative medicine for addressing rotator cuff injuries. The compilation of 758 articles in this study indicates a consistent upward trajectory in publications concerning tissue engineering and regenerative medicine for rotator cuff injuries. The scholarly contributions from the United States, China, and South Korea have notable influence on the progression of this research area. The analysis delineated ten specific research subdomains, including fatty infiltration, tears, tissue engineering, shoulder pain, tendon repair, extracellular matrix (ECM), and platelet-rich plasma growth factors. Noteworthy is the recurrent mention of keywords such as \"mesenchymal stem cells,\" \"repair,\" and \"platelet-rich plasma\" throughout past two decades, highlighting their critical role in the evolution of the relevant field. This bibliometric analysis meticulously examines 758 publications, offering an in-depth exploration of the developments in tissue engineering and regenerative medicine for rotator cuff injuries between 2003 and 2023. The study effectively constructs a knowledge map, delineating the progressive contours of research in this domain. By pinpointing prevailing trends and emerging hotspots, the study furnishes crucial insights, setting a direction for forthcoming explorations and providing guidance for future researchers in this evolving field.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信