Hongru Li, Mingbo Jiang, Zongyu Liu, Duoduo Fang, Limei Fan
{"title":"Hydrogels for Pelvic Organ Prolapse: Animal Models, Hydrogel Properties, and Biomedical Applications.","authors":"Hongru Li, Mingbo Jiang, Zongyu Liu, Duoduo Fang, Limei Fan","doi":"10.1177/19373341251375073","DOIUrl":null,"url":null,"abstract":"<p><p>Pelvic organ prolapse (POP) is a common yet complex condition affecting women, characterized by the descent of pelvic organs due to weakened pelvic floor structures. While several treatment strategies exist, their efficacy is often limited, and complications such as surgical failure or recurrence can hinder long-term success. Hydrogels, due to their unique properties such as high-water content, biocompatibility, and flexibility, offer promising potential in the management of POP. This review summarizes various animal models of POP including abdominal wall weakness model, sustained pressure method (vaginal ball stretching), ovariectomy (OVX) model, and gene knockout model. This review further provides a comprehensive overview of the role of hydrogels in POP, highlighting their applications in tissue engineering, drug delivery, and as coatings or injectable materials for prolapsed organs. Furthermore, the challenges in their development were discussed, including material selection, degradability, mechanical properties, and long-term biocompatibility. The strategies to optimize hydrogel performance to better meet clinical needs, with an emphasis on personalization and multifunctionality, were outlined. In conclusion, while hydrogels offer significant promise, further research into their design, application methods, and clinical outcomes is crucial to fully realize their potential in the treatment of POP. Impact Statement This review highlights the transformative potential of hydrogels in treating pelvic organ prolapse, a condition with limited long-term therapeutic success. By systematically analyzing animal models and exploring hydrogel applications in tissue repair and drug delivery, it identifies critical challenges and future directions. The insights offered lay the groundwork for personalized, multifunctional hydrogel systems, guiding future research and accelerating clinical translation.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251375073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Pelvic organ prolapse (POP) is a common yet complex condition affecting women, characterized by the descent of pelvic organs due to weakened pelvic floor structures. While several treatment strategies exist, their efficacy is often limited, and complications such as surgical failure or recurrence can hinder long-term success. Hydrogels, due to their unique properties such as high-water content, biocompatibility, and flexibility, offer promising potential in the management of POP. This review summarizes various animal models of POP including abdominal wall weakness model, sustained pressure method (vaginal ball stretching), ovariectomy (OVX) model, and gene knockout model. This review further provides a comprehensive overview of the role of hydrogels in POP, highlighting their applications in tissue engineering, drug delivery, and as coatings or injectable materials for prolapsed organs. Furthermore, the challenges in their development were discussed, including material selection, degradability, mechanical properties, and long-term biocompatibility. The strategies to optimize hydrogel performance to better meet clinical needs, with an emphasis on personalization and multifunctionality, were outlined. In conclusion, while hydrogels offer significant promise, further research into their design, application methods, and clinical outcomes is crucial to fully realize their potential in the treatment of POP. Impact Statement This review highlights the transformative potential of hydrogels in treating pelvic organ prolapse, a condition with limited long-term therapeutic success. By systematically analyzing animal models and exploring hydrogel applications in tissue repair and drug delivery, it identifies critical challenges and future directions. The insights offered lay the groundwork for personalized, multifunctional hydrogel systems, guiding future research and accelerating clinical translation.
期刊介绍:
Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.