基于聚乳酸的神经再生研究进展

IF 4.6 2区 医学 Q2 CELL & TISSUE ENGINEERING
Qingyuan Wu, Xiangqi Hui, Changqing Li
{"title":"基于聚乳酸的神经再生研究进展","authors":"Qingyuan Wu, Xiangqi Hui, Changqing Li","doi":"10.1177/19373341251370771","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries, though rarely fatal, can lead to sensory and motor deficits and neuropathic pain, significantly lowering patients' quality of life. Thus, it is crucial to explore potential treatments that can promote the regeneration of injured sciatic nerves. Currently, nerve anastomosis is performed between the two ends for short-gap nerve defects, while long-gap nerve defects require the use of nerve conduits, scaffolds, and nerve grafts. In terms of neural tissue engineering, identifying suitable biomaterials remains a key challenge. Polylactic acid (PLA) is a synthetic, biodegradable polymer with excellent processability, allowing it to be manufactured into various structures. Its mechanical properties, biodegradability, biomineralization capacity, and antibacterial properties make it a promising material for neural tissue engineering applications. In this work, we first introduce the physical and chemical properties, as well as the synthesis routes, of PLA and further elucidate the effect of various additives on its mechanical properties. Finally, we critically evaluate PLA-based strategies-including scaffolds, nerve conduits, drug delivery carriers, films, and microspheres-for promoting peripheral nerve regeneration. Taken together, PLA and its derivatives have a promising future in neural tissue engineering, with application methods and scenarios set to become more diverse.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress in Nerve Regeneration Based on Polylactic Acid.\",\"authors\":\"Qingyuan Wu, Xiangqi Hui, Changqing Li\",\"doi\":\"10.1177/19373341251370771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral nerve injuries, though rarely fatal, can lead to sensory and motor deficits and neuropathic pain, significantly lowering patients' quality of life. Thus, it is crucial to explore potential treatments that can promote the regeneration of injured sciatic nerves. Currently, nerve anastomosis is performed between the two ends for short-gap nerve defects, while long-gap nerve defects require the use of nerve conduits, scaffolds, and nerve grafts. In terms of neural tissue engineering, identifying suitable biomaterials remains a key challenge. Polylactic acid (PLA) is a synthetic, biodegradable polymer with excellent processability, allowing it to be manufactured into various structures. Its mechanical properties, biodegradability, biomineralization capacity, and antibacterial properties make it a promising material for neural tissue engineering applications. In this work, we first introduce the physical and chemical properties, as well as the synthesis routes, of PLA and further elucidate the effect of various additives on its mechanical properties. Finally, we critically evaluate PLA-based strategies-including scaffolds, nerve conduits, drug delivery carriers, films, and microspheres-for promoting peripheral nerve regeneration. Taken together, PLA and its derivatives have a promising future in neural tissue engineering, with application methods and scenarios set to become more diverse.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19373341251370771\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251370771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

周围神经损伤虽然很少致命,但可导致感觉和运动障碍以及神经性疼痛,显著降低患者的生活质量。因此,探索促进损伤坐骨神经再生的潜在治疗方法至关重要。目前,短间隙神经缺损多采用神经两端吻合,而长间隙神经缺损则需要使用神经导管、支架和神经移植物。在神经组织工程方面,确定合适的生物材料仍然是一个关键的挑战。聚乳酸(PLA)是一种合成的、可生物降解的聚合物,具有优异的可加工性,可以制造成各种结构。它的机械性能、生物降解性、生物矿化能力和抗菌性能使其成为神经组织工程应用的有前途的材料。本文首先介绍了聚乳酸的物理、化学性质和合成路线,并进一步阐明了各种添加剂对其力学性能的影响。最后,我们批判性地评估了基于pla的策略,包括支架、神经导管、药物输送载体、薄膜和微球,以促进周围神经再生。综上所述,聚乳酸及其衍生物在神经组织工程中具有广阔的应用前景,其应用方法和场景将更加多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Progress in Nerve Regeneration Based on Polylactic Acid.

Peripheral nerve injuries, though rarely fatal, can lead to sensory and motor deficits and neuropathic pain, significantly lowering patients' quality of life. Thus, it is crucial to explore potential treatments that can promote the regeneration of injured sciatic nerves. Currently, nerve anastomosis is performed between the two ends for short-gap nerve defects, while long-gap nerve defects require the use of nerve conduits, scaffolds, and nerve grafts. In terms of neural tissue engineering, identifying suitable biomaterials remains a key challenge. Polylactic acid (PLA) is a synthetic, biodegradable polymer with excellent processability, allowing it to be manufactured into various structures. Its mechanical properties, biodegradability, biomineralization capacity, and antibacterial properties make it a promising material for neural tissue engineering applications. In this work, we first introduce the physical and chemical properties, as well as the synthesis routes, of PLA and further elucidate the effect of various additives on its mechanical properties. Finally, we critically evaluate PLA-based strategies-including scaffolds, nerve conduits, drug delivery carriers, films, and microspheres-for promoting peripheral nerve regeneration. Taken together, PLA and its derivatives have a promising future in neural tissue engineering, with application methods and scenarios set to become more diverse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信