{"title":"Yr29 combined with QYr.nwafu-4BL.3 confers durable resistance to stripe rust in wheat cultivar Jing 411.","authors":"Mingjie Xiang, Bo Tian, Jianghao Cao, Shengjie Liu, Caie Zhou, Xiaoting Wang, Yibo Zhang, Jiale Li, Xunying Yuan, Jufen Wan, Rui Yu, Weijun Zheng, Jianhui Wu, Qingdong Zeng, Zhensheng Kang, Chunlian Li, Fa Cui, Dejun Han","doi":"10.1007/s00122-024-04758-y","DOIUrl":"10.1007/s00122-024-04758-y","url":null,"abstract":"<p><strong>Key message: </strong>The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter E Eckstein, Lindsay J Griffith, Xiang M Zhang, T Kelly Turkington, Mark G Colin, Samuel Holden, Sean Walkowiak, Gurcharn S Brar, Aaron D Beattie
{"title":"An island of receptor-like genes at the Rrs13 locus on barley chromosome 6HS co-locate with three novel sources of scald resistance.","authors":"Peter E Eckstein, Lindsay J Griffith, Xiang M Zhang, T Kelly Turkington, Mark G Colin, Samuel Holden, Sean Walkowiak, Gurcharn S Brar, Aaron D Beattie","doi":"10.1007/s00122-024-04746-2","DOIUrl":"10.1007/s00122-024-04746-2","url":null,"abstract":"<p><p>Three Hordeum spontaneum-derived resistances (referred to as 145L2, 41T1 and 40Y5) have demonstrated long-term effectiveness against barley scald, caused by Rhynchosporium commune, in western Canada. Genetic mapping of these resistances in three populations, and the use of five barley genome assemblies, revealed they co-located to a narrowly defined 0.58-1.2 Mbp region of chromosome 6HS containing the Rrs13 scald resistance gene. Differential disease reactions among the three resistances and a Rrs13 carrier (AB6) to a panel of 24 scald isolates indicated that the four resistances were unique from one another. A marker created to target the 6HS scald locus was screened across a panel of barley germplasm that included H. vulgare, H. spontaneum and H. bulbosum lines. The marker showed specificity to H. vulgare lines known to carry the 6HS scald resistances and to two H. spontaneum lines that trace their origins to Jordan. Within the 0.58-1.2 Mbp region were 2-7 tandemly repeated leucine-rich repeat receptor-like proteins (LRR-RLP) and one lectin receptor-like kinase (Lec-RLK) genes with abundant sequence variation between them. The well-defined role that RLP and RLK genes play in plant defense responses make them logical candidate resistance genes, with one possible hypothesis being that each unique scald resistance may be encoded by a different RLP that interacts with a common RLK. It is suggested the three scald resistances be temporarily named Rrs13<sup>145L2</sup>, Rrs13<sup>41T1</sup> and Rrs13<sup>40Y5</sup> to recognize their co-location to the Rrs13 locus until it is determined whether these resistances represent unique genes or alleles of the same gene.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-localization of quantitative trait loci for pod and kernel traits and development of molecular marker for kernel weight on chromosome Arahy05 in peanut (Arachis hypogaea L.).","authors":"Yuanjin Fang, Hua Liu, Ziqi Sun, Li Qin, Zheng Zheng, Feiyan Qi, Jihua Wu, Wenzhao Dong, Bingyan Huang, Xinyou Zhang","doi":"10.1007/s00122-024-04749-z","DOIUrl":"10.1007/s00122-024-04749-z","url":null,"abstract":"<p><strong>Key message: </strong>Stable QTL for pod and kernel traits were co-localized on chromosome Arahy05, and an INDEL marker at 106,411,957 on Arahy05 was developed and validated to be useful for marker-assisted selection of kernel weight. Pod and kernel traits, such as hundred pod weight (HPW), and hundred kernel weight (HKW), along with pod and kernel sizes, are pivotal determinants of yield in peanut breeding programs. This study sought to identify quantitative trait loci (QTL) that are associated with these pod and kernel traits in peanuts. To achieve this, a recombinant inbred line (RIL) population, was derived from a cross between Yuhua15, a cultivar known for its high yield, and a germplasm accession W1202. The investigation uncovered stable and major QTL that are significantly associated with both pod and kernel weight and were consistently co-localized on chromosomes Arahy05 and Arahy08. Furthermore, an INDEL marker was identified and characterized in the QTL interval on Arahy05. An extensive re-sequencing analysis comprising 395 germplasm accessions led to the discovery of two principal haplotypes within a 500-kb window flanking the aforementioned INDEL marker. The haplotypes exhibited a significant correlation with the HKW in our diverse panel of germplasm accessions. Notably, the 170 accessions harboring the haplotype associated with an increased HKW primarily represented botanical varieties, specifically Arachis hypogaea var. hypogaea and A. hypogaea var. hirsuta. On the other hand, the 137 accessions associated with the alternative haplotype, which corresponded to a reduced HKW, were predominately identified as belonging to botanical varieties within A. hypogaea subsp. fastigiata. The INDEL marker located on Arahy05, which demonstrates close linkage to the pod and kernel traits, would be an efficient approach for marker-assisted selection (MAS) of pod and kernel weight in breeding programs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genomic estimated selection criteria and parental contributions in parent selection increase genetic gain of maternal haploid inducers in maize.","authors":"Yu-Ru Chen, Ursula K Frei, Thomas Lübberstedt","doi":"10.1007/s00122-024-04744-4","DOIUrl":"10.1007/s00122-024-04744-4","url":null,"abstract":"<p><strong>Key message: </strong>Parental combinations determined by genomic estimated usefulness and parental contributions of the lines in bridging population can enhance the genetic gain of traits of interest in maternal haploid inducer breeding. Parent selection in crosses aligns well with the quantitative trait performance in the progenies. We herein take advantage of estimated genetic values (EGV) and usefulness criteria (UC) of bi-parental combinations by genomic prediction (GP) to compare the empirical performance of doubled haploid inducer (DHI) progenies of eight elite inducers crosses in a half-diallel. We used parental contribution and discovery of superiors from elite-by-historical bridging populations to enhance genetic gain for long-term selection. In this empirical study, the narrow-sense heritabilities of four traits of interest (Days to flowering, DTF; haploid induction rate, HIR; plant height, PHT; Total primary branch length, PBL) in DHI population were 0.81, 0.71, 0.45 and 0.46, respectively. The genomic estimated EGV_Mid/Mean and EGV/UC_Inferior was significantly correlated with the sample mean of progenies and inferiors in four traits in the breeding and bridging population. EGV/UC_Superior were significantly correlated with the mean of superiors in DTF, PHT, and PBL in breeding and bridging populations. The genomic estimated parent contributions in DH progenies of bridging populations enabled discovery of favorable genome region from historical inducers to improve the genetic gain of HIR for long-term selection.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL.","authors":"Biran Gong, Jing Gao, Yangqiu Xie, Hao Zhang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Yonghong Zhou, Dandan Wu, Yinghui Li, Houyang Kang","doi":"10.1007/s00122-024-04756-0","DOIUrl":"10.1007/s00122-024-04756-0","url":null,"abstract":"<p><strong>Key message: </strong>Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao Cao, Junxiong Xu, Minhang Wang, Jing Gao, Zhen Zhao, Kexin Li, Lu Yang, Kanglu Zhao, Meiping Sun, Jing Dong, Getu Chao, Hong Zhang, Yaqingqing Niu, Chunxia Yan, Xiufeng Gong, Lei Wu, Zhiyong Xiong
{"title":"Unambiguous chromosome identification reveals the factors impacting irregular chromosome behaviors in allotriploid AAC Brassica.","authors":"Yao Cao, Junxiong Xu, Minhang Wang, Jing Gao, Zhen Zhao, Kexin Li, Lu Yang, Kanglu Zhao, Meiping Sun, Jing Dong, Getu Chao, Hong Zhang, Yaqingqing Niu, Chunxia Yan, Xiufeng Gong, Lei Wu, Zhiyong Xiong","doi":"10.1007/s00122-024-04734-6","DOIUrl":"10.1007/s00122-024-04734-6","url":null,"abstract":"<p><strong>Key message: </strong>The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maxime de Ronne, Amina Abed, Gaétan Légaré, Jérôme Laroche, Vincent-Thomas Boucher St-Amour, Éric Fortier, Aaron Beattie, Ana Badea, Raja Khanal, Louise O'Donoughue, Istvan Rajcan, François Belzile, Brian Boyle, Davoud Torkamaneh
{"title":"Integrating targeted genetic markers to genotyping-by-sequencing for an ultimate genotyping tool.","authors":"Maxime de Ronne, Amina Abed, Gaétan Légaré, Jérôme Laroche, Vincent-Thomas Boucher St-Amour, Éric Fortier, Aaron Beattie, Ana Badea, Raja Khanal, Louise O'Donoughue, Istvan Rajcan, François Belzile, Brian Boyle, Davoud Torkamaneh","doi":"10.1007/s00122-024-04750-6","DOIUrl":"10.1007/s00122-024-04750-6","url":null,"abstract":"<p><p>New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations. However, the major weakness of GBS methodologies is their inability to genotype targeted markers. Conversely, targeted methods, such as amplicon sequencing (AmpSeq), often face cost constraints, hindering genome-wide genotyping across a large cohort. Although GBS and AmpSeq data can be generated from the same sample, an efficient method to achieve this is lacking. In this study, we present the Genome-wide & Targeted Amplicon (GTA) genotyping platform, an innovative way to integrate multiplex targeted amplicons into the GBS library preparation to provide an all-in-one cost-effective genotyping solution to breeders and research communities. Custom primers were designed to target 23 and 36 high-value markers associated with key agronomical traits in soybean and barley, respectively. The resulting multiplex amplicons were compatible with the GBS library preparation enabling both GBS and targeted genotyping data to be produced efficiently and cost-effectively. To facilitate data analysis, we have introduced Fast-GBS.v3, a user-friendly bioinformatic pipeline that generates comprehensive outputs from data obtained following sequencing of GTA libraries. This high-throughput low-cost approach will greatly facilitate the application of DNA markers as it provides required markers for both MAS and GS in a single assay.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus.","authors":"Ying Fu, Min Yao, Ping Qiu, Maolin Song, Xiyuan Ni, Erli Niu, Jianghua Shi, Tanliu Wang, Yaofeng Zhang, Huasheng Yu, Lunwen Qian","doi":"10.1007/s00122-024-04733-7","DOIUrl":"10.1007/s00122-024-04733-7","url":null,"abstract":"<p><strong>Key message: </strong>We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haidong Yan, Yarong Jin, Haipeng Yu, Chengran Wang, Bingchao Wu, Chris Stephen Jones, Xiaoshan Wang, Zheni Xie, Linkai Huang
{"title":"Genomic selection for agronomical phenotypes using genome-wide SNPs and SVs in pearl millet.","authors":"Haidong Yan, Yarong Jin, Haipeng Yu, Chengran Wang, Bingchao Wu, Chris Stephen Jones, Xiaoshan Wang, Zheni Xie, Linkai Huang","doi":"10.1007/s00122-024-04754-2","DOIUrl":"10.1007/s00122-024-04754-2","url":null,"abstract":"<p><p>Pearl millet is an essential crop worldwide, with noteworthy resilience to abiotic stress, yet the advancement of its breeding remains constrained by the underutilization of molecular-assisted breeding techniques. In this study, we collected 1,455,924 single nucleotide polymorphism (SNP) and 124,532 structural variant (SV) markers primarily from a pearl millet inbred germplasm association panel consisting of 242 accessions including 120 observed phenotypes, mostly related to the yield. Our findings revealed that the SV markers had the capacity to capture genetic diversity not discerned by SNP markers. Furthermore, no correlation in heritability was observed between SNP and SV markers associated with the same phenotype. The assessment of the nine genomic prediction models revealed that SV markers performed better than SNP markers. When using the SV markers as the predictor variable, the genomic BLUP model achieved the best performance, while using the SNP markers, Bayesian methods outperformed the others. The integration of these models enabled the identification of eight candidate accessions with high genomic estimated breeding values (GEBV) across nine phenotypes using SNP markers. Four candidate accessions were identified with high GEBV across 22 phenotypes using SV markers. Notably, accession 'P23' emerged as a consistent candidate predicted based on both SNP and SV markers specifically for panicle number. These findings contribute valuable insights into the potential of utilizing both SNP and SV markers for genomic prediction in pearl millet breeding. Moreover, the identification of promising candidate accessions, such as 'P23', underscores the accelerated prospects of molecular breeding initiatives for enhancing pearl millet varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dayong Wei, Chuanxing Zhang, Maolin Ran, Jie Wu, Xiaomei Li, Hongzhen Wu, Zhimin Wang, Qinglin Tang, Feng Yang
{"title":"A novel SNP within the Rsa10025320 gene is highly associated with hollowness in red-skinned radish fleshy roots.","authors":"Dayong Wei, Chuanxing Zhang, Maolin Ran, Jie Wu, Xiaomei Li, Hongzhen Wu, Zhimin Wang, Qinglin Tang, Feng Yang","doi":"10.1007/s00122-024-04747-1","DOIUrl":"10.1007/s00122-024-04747-1","url":null,"abstract":"<p><p>Hollowness is a physiological disorder that frequently occurs during the growth and postharvest storage phases of fleshy radish roots, significantly diminishing quality, yield, and marketability. However, the molecular mechanism for hollowness remains elusive. To identify the QTLs and potential candidate genes for hollowness tolerance in radish, F<sub>2</sub> and BC<sub>1</sub> populations were constructed from hollowness-tolerant radish (C16) and hollowness-sensitive radish (C17) in the present study. Genetic analysis indicated that hollowness tolerance may be governed by two independent recessive genes. By employing bulked segregant analysis sequencing (BSA-seq), two significant candidate genomic intervals were pinpointed on chromosomes R04 (960 kb, 6.48-7.44 Mb) and R05 (600 kb, 31.44-32.04 Mb), which together harbor 107 annotated genes. Transcriptomic sequencing revealed that the downregulated differentially expressed genes (DEGs) were significantly enriched in biological processes related to cell death and the response to water stress, whereas the upregulated DEGs were significantly associated with the chitin catabolic process and the cell wall macromolecule metabolic process. A total of 46 intersecting genes were identified among these DEGs within the genomic intervals of interest. One gene with high expression (Rsa10025345) and two with low expression (Rsa10025320 and Rsa10018106) were detected in the tolerant variety C16. Furthermore, a SNP within Rsa10025320 resulting in an amino acid change (A188E) was characterized through sequence variation observed in both BSA-seq and RNA-seq data and further developed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. Our study reveals potential target genes for tolerance to hollowness and paves the way for marker-assisted breeding of hollowness tolerance in red-skinned radishes.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}