{"title":"Integrative mapping in large inbred and hybrid association panels along with an F<sub>2</sub> population advanced a novel understanding of general combining ability for plant height in maize.","authors":"Jie Luo, Yangjing Li, Yulin Jiang, Xiaoxiang Zhang, Guangxiao Bai, Zhonghua Peng, Qiang Yi, Xianbin Hou","doi":"10.1007/s00122-025-04883-2","DOIUrl":"https://doi.org/10.1007/s00122-025-04883-2","url":null,"abstract":"<p><strong>Key message: </strong>We identified 44 QTL for PH-related traits evaluated for inbreds per se and GCA effects in large inbred and hybrid association panels and seven QTL for EH/PH in an F<sub>2</sub> population coupled with BSA-seq. Among four co-localized QTL, seven novel potential candidate genes were significantly associated with PH-related traits, shedding new light on understanding the genetics of GCA for PH. Breeding optimal plant height (PH) is essential for improving maize (Zea mays L.) plant architecture, yield, lodging resistance, and density tolerance, yet there is limited genetic loci available regarding the general combining ability (GCA) for PH-related traits. In the current study, an inbred association panel of 312 inbred lines (IAP) along with a hybrid association panel (HAP) of 764 hybrid combinations were utilized to dissect the genetics of PH-related traits and their GCA effects across three environments. We found 44 quantitative trait loci (QTL) with 76 significant single-nucleotide polymorphisms (SNPs) for PH-related traits evaluated for inbreds per se and GCA effects; however, no overlapping loci were identified across inbreds per se and GCA effects, indicating conspicuous discrepancies in their genetics. In addition, GCA effects with complex genetic basis differed for diverse testers, which highlighted the specificity and complexity among heterotic groups. Correspondingly, we evaluated an F<sub>2</sub> population derived from two parental lines LY-02 and LH513 with the contrasting EH/PH coupled with bulked segregant analysis by sequencing (BSA-seq) and found seven QTL for EH/PH. Among four co-localized loci across the association and QTL mapping, seven novel candidate genes were found to differently express among LY-02, LH513, and their F<sub>1</sub> and were potentially associated with PH-related traits. The current study with combined mapping in diverse mapping populations provided a novel understanding of GCA for PH-related traits in maize.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"90"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuqing Guo, Fei Han, Minxuan Liu, Huibing Han, Kongjun Dong, Junxue Yang, Liyuan Zhang, Xiaoli Gao, Baili Feng, Pu Yang
{"title":"A genome-wide association study reveals the genetic architecture of 19 agronomic traits in broomcorn millet (Panicum miliaceum L.).","authors":"Shuqing Guo, Fei Han, Minxuan Liu, Huibing Han, Kongjun Dong, Junxue Yang, Liyuan Zhang, Xiaoli Gao, Baili Feng, Pu Yang","doi":"10.1007/s00122-025-04870-7","DOIUrl":"https://doi.org/10.1007/s00122-025-04870-7","url":null,"abstract":"<p><strong>Key message: </strong>The genetic architecture of 19 growth and development and yield-related traits was dissected by a GWAS in multi-environment of a diverse population consisting of 301 broomcorn millet accessions. Broomcorn millet (Panicum miliaceum L.) is an ideal replant crop due to its advantages of drought resistance, short growth period, and strong adaptability. Understanding the genetic basis of agronomic traits is crucial for improving the efficiency of molecular breeding in broomcorn millet. In this study, a natural population consisting of 301 worldwide broomcorn millet accessions was genotyped using 208,169 high-quality single-nucleotide polymorphisms (SNPs). Nineteen agronomic traits, including growth period, plant architecture, and yield-related traits, were investigated across ten environments. Based on genomic and phenotypic data, a genome-wide association study (GWAS) was performed to identify significant marker-trait associations (MTAs) affecting these traits. Using the linear mixed model, 662 significant MTAs were identified for 19 traits, with 56 stable MTAs repeatedly identified over two environments. Among these stable SNPs, 40 were located in genomic regions where no relevant loci had been reported previously. Notably, superior alleles of four significant SNPs chr1_2925777, chr7_157147, chr4_3971792, and chr5_2126999 associated with panicle length (PL) and the whole growth period (GP) exhibited significantly higher phenotypic levels. Ultimately, 174 genes within the flanking regions of these four significant SNPs were annotated. Among these, six genes were identified as candidate genes associated with PL and GP. Further haplotype analysis identified seven haplotypes for longmi011379 and longmi011388. Phenotypic assessment of major haplotypes revealed significant differences between Hap1 and Hap2. These results provide a valuable resource for understanding the genetic mechanisms of growth and development and yield-related traits and developing marker-assisted selection breeding in broomcorn millet.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"89"},"PeriodicalIF":4.4,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Feng, Yu Wang, Xiaolong Zhang, Tingting Mu, Biaoming Zhang, Yan Li, Haitao Zhang, Wei Hua, Wenya Yuan, Haitao Li
{"title":"Targeted mutagenesis and functional marker development of two Bna.TAC1s conferring novel rapeseed germplasm with compact architecture.","authors":"Bin Feng, Yu Wang, Xiaolong Zhang, Tingting Mu, Biaoming Zhang, Yan Li, Haitao Zhang, Wei Hua, Wenya Yuan, Haitao Li","doi":"10.1007/s00122-025-04876-1","DOIUrl":"https://doi.org/10.1007/s00122-025-04876-1","url":null,"abstract":"<p><strong>Key message: </strong>Simultaneous disruption of two Bna.TAC1s, redundantly controlling the branch angle, generates a compact architecture in rapeseed, and two functional markers are developed to facilitate breeding rapeseed cultivars with compact architecture. Shoot branch angle is a key factor in determining the aerial plant architecture. A narrow branch angle can increase yields by facilitating mechanized harvest and high-density planting in rapeseed, a globally important oil crop. However, the available rapeseed varieties with narrow branch angle are very limited. In this study, two Bna.TAC1 members named BnaA5.TAC1 and BnaC4.TAC1 were found to have the four canonical domains of TAC1-like members, including domains I, II, III and IV in rapeseed. Each Bna.TAC1 exhibits dominant expression in the lateral branch with gradual dynamic response to light and encodes a protein localized in the plasma membrane. CRISPR/Cas9-mediated editing system was used to simultaneously knock out the two Bna.TAC1s to obtain two different Bna.tac1 double mutants, designed as CR-Bna.tac1-1 and CR-Bna.tac1-2. These two mutants displayed different degrees of compact architecture without affecting plant height and yield-related traits. The two Bna.TAC1s were also shown to play a redundant role in controlling branch angle by regulating the gravitropic response. In addition, we developed two specific gel-based functional markers in each Bna.TAC1 for the transgene-free mutant CR-Bna.tac1-1, which co-segregate with narrower branch angle and could help to identify the mutant alleles in a segregating population. We also found that the genomic variation of the two Bna.TAC1s is not associated with branch angle variation in the natural rapeseed population. Overall, these results reveal the key roles of Bna.TAC1s in regulation of rapeseed branch angle and provide a novel germplasm and functional markers for breeding superior varieties with compact architecture in rapeseed.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"86"},"PeriodicalIF":4.4,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In vitro- and in vivo-based approaches for doubled haploid production in Zea mays L.: challenges and opportunities.","authors":"Behzad Ahmadi","doi":"10.1007/s00122-025-04873-4","DOIUrl":"https://doi.org/10.1007/s00122-025-04873-4","url":null,"abstract":"<p><p>Maize (Zea mays L.) is a cereal species of significant importance for global food security, animal nutrition, and agricultural economies. The enhancement of maize yield through hybrid breeding and the selection of desirable traits-such as increased vigor, resilience to biotic and abiotic stressors, and improved adaptability to diverse environmental conditions-represents a significant milestone in the field of agricultural biotechnology. Production of parental inbred lines, which is a prerequisite for hybrid breeding, can be accomplished through conventional breeding or doubled haploid (DH) techniques, the latter provides accelerated homozygosity and genetic uniformity. This review focuses on the various in vitro- and in vivo-based methods for the production of DH lines in maize, discussing their respective challenges and opportunities. Furthermore, it explores recent advancements in chromosome doubling techniques necessary for restoring fertility to haploids, which are essential for their effective integration into breeding programs. This review also aims to delineate current knowledge and future directions in maize DH technology, ultimately contributing to optimized breeding strategies for enhanced maize production.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"87"},"PeriodicalIF":4.4,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingfeng Dong, Hao Ren, Xuefen Cai, Yujie Zhang, Shan Lu, Dezheng Liu, Muhammad Ateeq, Liang Chen, Yin-Gang Hu
{"title":"Deciphering the regulatory network of lignocellulose biosynthesis in bread wheat through genome-wide association studies.","authors":"Qingfeng Dong, Hao Ren, Xuefen Cai, Yujie Zhang, Shan Lu, Dezheng Liu, Muhammad Ateeq, Liang Chen, Yin-Gang Hu","doi":"10.1007/s00122-025-04868-1","DOIUrl":"https://doi.org/10.1007/s00122-025-04868-1","url":null,"abstract":"<p><strong>Key message: </strong>This study identified 46 key QTL and 17 candidate genes and developed a KASP marker, providing valuable molecular tools for enhancing lignocellulose traits, lodging resistance, and bioenergy potential in wheat. Wheat lignocellulose, composed of lignin, cellulose, and hemicellulose, plays a crucial role in strengthening plant cell walls, enhancing lodging resistance, and contributing to bioenergy production. However, the genetic basis underlying the variation in lignocellulose content in wheat remains poorly understood. The stem lignin, cellulose, and hemicellulos contents in the second stem internode of a panel of 166 wheat accessions grown in three environments were measured, combined with the genotyping data with 660 K wheat SNP chip; a genome-wide association studies (GWAS) were conducted to identify loci associated with the lignocellulose content in wheat. Significant variations in lignin, cellulose, and hemicellulose contents were observed among the wheat accessions. GWAS identified 1146 significant SNPs associated with lignin, cellulose, and hemicellulose contents, distributed across the A, B, and D sub-genomes of wheat. Joint analysis of haplotype blocks refined these associations, identifying 46 significant quantitative trait loci (QTL) regions and 17 candidate genes, primarily linked to vascular development, hemicellulose synthesis, internode elongation regulation, and lignin biosynthesis. A KASP marker (NW_CC5951) for lignocellulose was developed. These findings provide valuable molecular markers for marker-assisted selection, supporting wheat breeding for improved stem quality and lodging resistance, and offer insights into balancing grain yield with lodging resistance and lignocellulosic energy production.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"85"},"PeriodicalIF":4.4,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vahe Avagyan, Martin P Boer, Junita Solin, Aalt D J van Dijk, Daniela Bustos-Korts, Bart-Jan van Rossum, Jip J C Ramakers, Fred van Eeuwijk, Willem Kruijer
{"title":"Penalized factorial regression as a flexible and computationally attractive reaction norm model for prediction in the presence of GxE.","authors":"Vahe Avagyan, Martin P Boer, Junita Solin, Aalt D J van Dijk, Daniela Bustos-Korts, Bart-Jan van Rossum, Jip J C Ramakers, Fred van Eeuwijk, Willem Kruijer","doi":"10.1007/s00122-025-04865-4","DOIUrl":"https://doi.org/10.1007/s00122-025-04865-4","url":null,"abstract":"<p><strong>Key message: </strong>Penalized factorial regression offers a computationally attractive alternative to kernel and deep learning methods for prediction of genotype by environment interactions. For two representative data sets on wheat and maize, prediction accuracies were comparable, while computing requirements and time were clearly lower. A longstanding challenge in plant breeding and genetics is the prediction of yield for new environments in the presence of genotype by environment interaction ( <math><mrow><mi>G</mi> <mo>×</mo> <mi>E</mi></mrow> </math> ). The genotypes in this case are promising candidate varieties at an advanced stage of breeding programs or are part of statutory variety trials or post registration trials. The genotypes have been tested in a limited set of trials and the question is how these genotypes will perform in future growing conditions. A reaction norm approach seems adequate to address this challenge. Reaction norms are functions with genotype-specific parameters that express the phenotype as a function of environmental inputs. <math><mrow><mi>G</mi> <mo>×</mo> <mi>E</mi></mrow> </math> follows from differences in genotype-specific slope or rate parameters. Prediction of yield for new environments requires the identification of suitable reaction norm functions and the estimation of genotype-specific parameters together with knowledge about the environmental conditions. Here, we present penalized factorial regression with simple linear reaction norms for individual genotypes whose slopes are regularized by imposing a penalty upon them. Different types of penalization provide shrinkage, automatic selection of environmental covariates (EC's) and protection against overfitting for prediction of yield with medium to large numbers of EC's. Illustrations of our approach are given for a maize and a wheat data set. For these data, our approach compares well to alternative methods based on Bayesian regression and deep learning with respect to prediction accuracy, while computational demands are clearly lower.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"88"},"PeriodicalIF":4.4,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leelyn Chong, Huihui Su, Yingpeng Liu, Lingling Zheng, Lianying Tao, Hai Bie, Di Xiao, Yang Yang, Wanjun Zhang, Jing Zhang, Jifei Ren, Huafeng Liu, Zhenzhen Ren, Yanhui Chen, Zhangying Xi, Chengwei Li, Lixia Ku
{"title":"Creating a gene-indexed EMS mutation library of Zheng58 for improving maize genetics research.","authors":"Leelyn Chong, Huihui Su, Yingpeng Liu, Lingling Zheng, Lianying Tao, Hai Bie, Di Xiao, Yang Yang, Wanjun Zhang, Jing Zhang, Jifei Ren, Huafeng Liu, Zhenzhen Ren, Yanhui Chen, Zhangying Xi, Chengwei Li, Lixia Ku","doi":"10.1007/s00122-025-04878-z","DOIUrl":"10.1007/s00122-025-04878-z","url":null,"abstract":"<p><strong>Key message: </strong>We created the Zheng58 EMS Mutation Library, which provides a valuable resource for future investigations into the functions and roles of specific genes in maize physiology and development. Understanding the genetic variations present within maize is fundamental to improving maize breeding programs and developing crops with desirable traits. In this work, the Gene-Indexed Ethyl Methanesulfonate (EMS) Mutation Library of Zheng58 in maize was created to accelerate maize genetics research. By chemically inducing mutations in the Zheng58 maize inbred line using (EMS), 426 M<sub>2</sub> EMS lines were generated, of which 185 exhibited heritable phenotypic changes. Coupling with high throughput sequencing techniques, over two million mutations, encompassing single nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels), were subsequently identified. Functional annotation of mutation sites further indicated that a significant number of mutations influences important cellular processes, including translation termination (8,279), splice site disruption leading to mis-splicing (9,504), and missense mutations affecting protein-coding sequences (52,494). Therefore, the Gene-Indexed EMS Mutation Library of maize Zheng58 provides a valuable resource for future investigations into the functions and roles of specific genes in maize physiology and development.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"83"},"PeriodicalIF":4.4,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143721498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Le Wang, Hong Xue, Zhenbin Hu, Yang Li, Tuya Siqin, Hengyou Zhang
{"title":"A genome-wide association study prioritizes VRN1-2 as a candidate gene associated with plant height in soybean.","authors":"Le Wang, Hong Xue, Zhenbin Hu, Yang Li, Tuya Siqin, Hengyou Zhang","doi":"10.1007/s00122-025-04875-2","DOIUrl":"10.1007/s00122-025-04875-2","url":null,"abstract":"<p><p>Plant height is an important architectural trait that affects crop growth, yield, and stress resistance. Tremendous efforts have been dedicated to revealing the genetic basis or regulatory mechanism; however, the underlying molecular mechanism remains largely unknown primarily due to the lack of controlling genes. In this study, we conducted a single-nucleotide resolution genome-wide association study (GWAS) of plant height using a diverse soybean panel collected worldwide with 6.7 million genome-wide variants (SNPs and Indels). The GWAS of plant height identified three QTLs on chromosomes 10, 18, and 19, of which the one on chromosome 19 precisely co-localized with Dt1, known as a major stem growth habit-controlling gene. Other loci without reported genes for plant height were regarded to be new. A close investigation within QTL intervals proposed nine genes that were likely involved in the regulation of plant height according to the expression specificity in developing shoot tip meristems. VRN1-2 underlies the significant QTL on chromosome 10 was prioritized as the most promising candidate gene. VRN1-2 shows higher expression in Williams 82 with indeterminate growth habit than Dongnong50 with semi-determinate growth habit across vegetative (V2, V3) and reproductive (R1) growth stages. VRN1-2 carries non-synonymous variants in the coding region that were significantly associated with plant height variation. The GT allele conferring short plant height was likely subjected to artificial selection during domestication. These results provide a source of new loci and genes for further elaborating the regulatory mechanism of plant height and the key variants would facilitate soybean molecular breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"84"},"PeriodicalIF":4.4,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143721386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regreening mechanisms in cucumber: insights from a CsSIG2 mutation affecting chloroplast development.","authors":"Hanqiang Liu, Zeqiang Huang, Xinyue Wang, Kaihong Hu, Qinqin Jiang, Feifan Chen, Yuxuan Ma, Zhihui Cheng, Yupeng Pan, Yiqun Weng","doi":"10.1007/s00122-025-04854-7","DOIUrl":"https://doi.org/10.1007/s00122-025-04854-7","url":null,"abstract":"<p><strong>Key message: </strong>CsSIG2 is essential for cucumber chloroplast development, and mutations in CsSIG2 reveal mechanisms that restore chloroplast functionality and drive the regreening phenotype in the mutant. Chloroplast development and leaf color are essential traits that significantly influence plant photosynthesis and overall vigor. This study investigates a natural mutation in the cucumber that leads to a virescent leaf-color (Csvl-6) phenotype characterized by an initial yellow color in cotyledons and young leaves, which gradually transition to green as the plant matures. We utilized bulked segregant analysis and genetic linkage mapping to locate the best candidate gene sigma factor 2 (CsSIG2) on chromosome 6, identifying a single nonsynonymous SNP resulting in an arginine to glycine substitution in the CsSIG2 protein. Comparative transcriptome analysis highlighted that this mutation disrupts early chloroplast biogenesis and delays chlorophyll accumulation, but the chloroplasts can recover, leading to greening during later stages of leaf development. Our findings reveal that the recovery phenomenon involves upregulation of chloroplast-encoded genes responsible for thylakoid membrane formation and photosystem function, alongside altered expression of transcription factors linked to chlorophyll metabolism. This study elucidates the genetic and molecular basis of chloroplast development in cucumber, providing valuable insights into the mechanisms underlying leaf greening, which could inform future breeding efforts focused on manipulating leaf color traits for enhanced crop performance.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"82"},"PeriodicalIF":4.4,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Pan, Hongquan Li, Ming Qu, Xiaoli An, Jie Yang, Yujie Fu
{"title":"Melatonin enhances salt tolerance by promoting CcCAD10-mediated lignin biosynthesis in pigeon pea.","authors":"Feng Pan, Hongquan Li, Ming Qu, Xiaoli An, Jie Yang, Yujie Fu","doi":"10.1007/s00122-025-04846-7","DOIUrl":"https://doi.org/10.1007/s00122-025-04846-7","url":null,"abstract":"<p><p>Melatonin plays a crucial role in enhancing plant resistance to salt stress by regulating biosynthesis of specialized metabolites. Phenylpropanoids, especially lignin, contribute to all aspects of plant responses toward biotic and abiotic stresses. However, the crosstalk between melatonin and lignin is largely unknown in pigeon pea under salt stress. In this study, the cinnamyl alcohol dehydrogenase CcCAD10 was identified to be involved in melatonin treatment and salt stress. The content of lignin was significantly increased in CcCAD10 over-expression (OE) lines, the enhanced antioxidant enzyme activities, indicating enhanced salt resistance. As a parallel branch of the lignin synthesis pathway, the content of flavonoids was further determined. The accumulations of luteolin, genistin, genistein, biochain A, apigenin and isovitexin were down-regulated in CcCAD10-OE hairy root. The results indicate that CcCAD10-OE mediated carbon flow from the phenylalanine pathway is redirected to the lignin pathway at the expense of less carbon flow in the flavonoid pathway, enhancing the salt-tolerance. Furthermore, we found the exogenous melatonin stimulated endogenous melatonin production mainly by upregulating the expression of CcASMT2 gene. This study reveals a novel mechanism by which melatonin enhances salt tolerance in pigeon pea, which laid a foundation for exploring the molecular mechanism of melatonin in salt stress response.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"81"},"PeriodicalIF":4.4,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}