Dehui Zhao, Jianqi Zeng, Hui Jin, Dan Liu, Li Yang, Xianchun Xia, Yubing Tian, Yan Zhang, Shuanghe Cao, Wei Zhu, Chunping Wang, Zhonghu He, Jindong Liu, Yong Zhang
{"title":"Fine mapping of QGPC.caas-7AL for grain protein content in bread wheat.","authors":"Dehui Zhao, Jianqi Zeng, Hui Jin, Dan Liu, Li Yang, Xianchun Xia, Yubing Tian, Yan Zhang, Shuanghe Cao, Wei Zhu, Chunping Wang, Zhonghu He, Jindong Liu, Yong Zhang","doi":"10.1007/s00122-024-04769-9","DOIUrl":"10.1007/s00122-024-04769-9","url":null,"abstract":"<p><strong>Key message: </strong>A major stable QTL, QGPC.caas-7AL, for grain protein content of wheat, was narrowed down to a 1.82-Mb inter on chromosome 7AL, and four candidate genes were predicated. Wheat grain protein content (GPC) is important for end-use quality. Identification of genetic loci for GPC is helpful to create new varieties with good processing quality and nutrients. Zhongmai 578 (ZM578) and Jimai 22 (JM22) are two elite wheat varieties with different contents of GPC. In the present study, 262 recombinant inbred lines (RILs) derived from a cross between ZM578 and JM22 were used to map the GPC with high-density wheat Illumina iSelect 50 K single-nucleotide polymorphism (SNP) array. Seven quantitative trait loci (QTLs) were identified for GPC on chromosomes 3AS, 3AL, 3BS, 4AL, 5BS, 5DL and 7AL by inclusive composite interval mapping, designated as QGPC.caas-3AS, QGPC.caas-3AL, QGPC.caas-3BS, QGPC.caas-4AL, QGPC.caas-5BS, QGPC.caas-5DL and QGPC.caas-7AL, respectively. Among these, alleles for increasing GPC at QGPC.caas-3AS, QGPC.caas-3BS, QGPC.caas-4AL and QGPC.caas-7AL loci were contributed by ZM578, whereas those at the other three loci were from JM22. The stable QTL QGPC.caas-7AL was fine mapped to a 1.82-Mb physical interval using secondary populations from six heterozygous recombinant plants obtained by selfing a residual RIL. Four genes were predicted as candidates of QGPC.caas-7AL based on sequence polymorphism and expression patterns. The near-isogenic lines (NILs) with the favorable allele at the QGPC.caas-7AL locus increased Farinograph stability time, Extensograph extension area, extensibility and maximum resistance by 19.6%, 6.3%, 6.0% and 20.3%, respectively. Kompetitive allele-specific PCR (KASP) marker for QGPC.caas-7AL was developed and validated in a diverse panel of 166 Chinese wheat cultivars. These results provide further insight into the genetic basis of GPC, and the fine-mapped QGPC.caas-7AL will be an attractive target for map-based cloning and marker-assisted selection in wheat breeding programs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna Åstrand, Firuz Odilbekov, Ramesh Vetukuri, Alf Ceplitis, Aakash Chawade
{"title":"Leveraging genomic prediction to surpass current yield gains in spring barley.","authors":"Johanna Åstrand, Firuz Odilbekov, Ramesh Vetukuri, Alf Ceplitis, Aakash Chawade","doi":"10.1007/s00122-024-04763-1","DOIUrl":"10.1007/s00122-024-04763-1","url":null,"abstract":"<p><strong>Key message: </strong>Genetic gain in Nordic spring barley varieties was estimated to 1.07% per year. Additionally, genomic predictive ability for yield was 0.61 in a population of breeding lines. Barley is one of the most important crops in Europe and meeting the growing demand for food and feed requires continuous increase in yield. Genomic prediction (GP) has the potential to be a cost-efficient tool in breeding for complex traits; however, the rate of yield improvement in current barley varieties is unknown. This study therefore investigated historical and current genetic gains in spring barley and how accounting for row-type population stratification in a breeding population influences GP results. The genetic gain in yield was estimated using historical data from field trials from 2014 to 2022, with 22-60 market varieties grown yearly. The genetic gain was estimated to 1.07% per year for all varieties, serving as a reference point for future breeding progress. To analyse the potential of using GP in spring barley a population of 375 breeding lines of two-row and six-row barley were tested in multi-environment trials in 2019-2022. The genetic diversity of the row-types was examined and used as a factor in the predictions, and the potential to predict untested locations using yield data from other locations was explored. This resulted in an overall predictive ability of 0.61 for yield (kg/ha), with 0.57 and 0.19 for the separate two-row and the six-row breeding lines, respectively. Together this displays the potential of implementing GP in breeding programs and the genetic gain in spring barley market varieties developed through GP will help in quantifying the benefit of GP over conventional breeding in the future.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karine da Costa Bernardino, José Henrique Soler Guilhen, Cícero Beserra de Menezes, Flavio Dessaune Tardin, Robert Eugene Schaffert, Edson Alves Bastos, Milton José Cardoso, Rodrigo Gazaffi, João Ricardo Bachega Feijó Rosa, Antônio Augusto Franco Garcia, Claudia Teixeira Guimarães, Leon Kochian, Maria Marta Pastina, Jurandir Vieira Magalhaes
{"title":"Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables.","authors":"Karine da Costa Bernardino, José Henrique Soler Guilhen, Cícero Beserra de Menezes, Flavio Dessaune Tardin, Robert Eugene Schaffert, Edson Alves Bastos, Milton José Cardoso, Rodrigo Gazaffi, João Ricardo Bachega Feijó Rosa, Antônio Augusto Franco Garcia, Claudia Teixeira Guimarães, Leon Kochian, Maria Marta Pastina, Jurandir Vieira Magalhaes","doi":"10.1007/s00122-024-04761-3","DOIUrl":"10.1007/s00122-024-04761-3","url":null,"abstract":"<p><strong>Key message: </strong>Climate change can limit yields of naturally resilient crops, like sorghum, challenging global food security. Agriculture under an erratic climate requires tapping into a reservoir of flexible adaptive loci that can lead to lasting yield stability under multiple abiotic stress conditions. Domesticated in the hot and dry regions of Africa, sorghum is considered a harsh crop, which is adapted to important stress factors closely related to climate change. To investigate the genetic basis of drought stress adaptation in sorghum, we used a multi-environment multi-locus genome-wide association study (MEML-GWAS) in a subset of a diverse sorghum association panel (SAP) phenotyped for performance both under well-watered and water stress conditions. We selected environments in Brazil that foreshadow agriculture where both drought and temperature stresses coincide as in many tropical agricultural frontiers. Drought reduced average grain yield (Gy) by up to 50% and also affected flowering time (Ft) and plant height (Ph). We found 15 markers associated with Gy on all sorghum chromosomes except for chromosomes 7 and 9, in addition to loci associated with phenology traits. Loci associated with Gy strongly interacted with the environment in a complex way, while loci associated with phenology traits were less affected by G × E. Studying environmental covariables potentially underpinning G × E, increases in relative humidity and evapotranspiration favored and disfavored grain yield, respectively. High temperatures influenced G × E and reduced sorghum yields, with a ~ 100 kg ha<sup>-1</sup> average decrease in grain yield for each unit increase in maximum temperature between 29 and 38 °C. Extreme G × E for sorghum stress resilience poses an additional challenge to breed crops for moving, erratic weather conditions.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junli Zhang, Germán F Burguener, Francine Paraiso, Jorge Dubcovsky
{"title":"Natural alleles of LEAFY and WAPO1 interact to regulate spikelet number per spike in wheat.","authors":"Junli Zhang, Germán F Burguener, Francine Paraiso, Jorge Dubcovsky","doi":"10.1007/s00122-024-04759-x","DOIUrl":"10.1007/s00122-024-04759-x","url":null,"abstract":"<p><strong>Key message: </strong>Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salvatore Esposito, Samuela Palombieri, Paolo Vitale, Giuseppina Angione, Chiara D'Attilia, Francesca Taranto, Francesco Sestili, Pasquale De Vita
{"title":"Correction to: Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.).","authors":"Salvatore Esposito, Samuela Palombieri, Paolo Vitale, Giuseppina Angione, Chiara D'Attilia, Francesca Taranto, Francesco Sestili, Pasquale De Vita","doi":"10.1007/s00122-024-04755-1","DOIUrl":"10.1007/s00122-024-04755-1","url":null,"abstract":"","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean.","authors":"Fumio Taguchi-Shiobara, Koji Takahashi, Ryoichi Yano, Rintaro Suzuki, Yuko Yokota, Toshimasa Yamazaki, Tetsuya Yamada, Takashi Sayama, Naohiro Yamada, Nobuhiko Oki, Toyoaki Anai, Akito Kaga, Masao Ishimoto","doi":"10.1007/s00122-024-04743-5","DOIUrl":"10.1007/s00122-024-04743-5","url":null,"abstract":"<p><strong>Key message: </strong>The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-wide mapping of quantitative trait loci conferring resistance to stripe rust in spring wheat line PI 660072.","authors":"Xinli Zhou, Yuqi Wang, Yuqi Luo, Jie Shuai, Guoyun Jia, Hongyang Chen, Liangqi Zhang, Hao Chen, Xin Li, Kebing Huang, Suizhuang Yang, Meinan Wang, Yong Ren, Gang Li, Xianming Chen","doi":"10.1007/s00122-024-04760-4","DOIUrl":"10.1007/s00122-024-04760-4","url":null,"abstract":"<p><strong>Key message: </strong>Two major QTL for resistance to stripe rust were mapped on chromosome 2BL and 4BL in spring wheat PI 660072, and their KASP markers were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Identifying resistance genes is crucial for developing resistant cultivars to control the disease. Spring wheat PI 660072 (Triticum aestivum) has been identified to possess both adult-plant resistance (APR) and all-stage resistance (ASR) to stripe rust. To elucidate the genetic basis of the resistance in PI 660072, a mapping population consisting of 211 F<sub>5</sub><sup>-</sup>F<sub>7</sub> recombinant-inbred lines (RILs) was developed from a cross of PI 660072 with susceptible spring wheat Avocet S. The mapping population was phenotyped for stripe rust responses across five field environments from 2020 to 2022 and genotyped using the 15 K SNP (single nucleotide polymorphism) array to map stripe rust resistance loci. The mapping population was also tested at the seedling stage with predominant Chinese Pst races CYR31, CYR32, CYR34 and PST-YX1-3-1 in the greenhouse. Stripe rust resistance genes were identified using the quantitative trait locus (QTL) mapping approach. Two QTL were identified with QYrPI660072.swust-2BL mapped on the long arm of chromosome 2B for ASR and QYrPI660072.swust-4BL on the long arm of chromosome 4B for APR. To facilitate marker-assisted selection breeding, Kompetitive allele specific PCR (KASP) markers, KASP-1269 for QYrPI660072.swust-2BL and KASP-3209 for QYrPI660072.swust-4BL, were developed. These markers could be used to introgress the effective resistance QTL into new wheat cultivars.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenotypic characterization and genetic mapping of the semi-dwarf mutant sdw9 in maize.","authors":"Jiawen Zhao, Baiyu Yuan, Hao Zhang, Xiao Guo, Liangfa Wang, Xiaoqian Qiu, QianKun Xie, Liqin Mu, Chenhui Ma, Teng Zhou, Javed Hussain, Xiaoyang Chen, Xuehai Zhang, Dong Ding, Jiong Wan, Jihua Tang","doi":"10.1007/s00122-024-04762-2","DOIUrl":"10.1007/s00122-024-04762-2","url":null,"abstract":"<p><strong>Key message: </strong>In summary, we characterized a maize semi-dwarf mutant, sdw9, and successfully isolated the responsible gene, which encodes a GRAS protein, through a combination of map-based cloning and Re-sequencing (Re-seq). Our findings demonstrate that the candidate gene ZmGRAS42 regulates BR signaling genes, thereby influencing internode development. This regulatory function likely involves processes such as cell division, cell cycle regulation and cell wall synthesis. Favorable variations of ZmGRAS42 identified in this study may hold promise for the development of lodging-resistant maize cultivars suitable for high-density planting, contributing to the improvement of maize breeding programs. Plant height and lateral root angle are crucial determinants of plant architecture in maize (Zea mays) which are closely related to lodging resistance at high planting density. These traits are intricately regulated by various phytohormones. Mutations affecting hormone biosynthesis and signaling often lead to reduced yield alongside diminished plant height, posing challenges in breeding dwarf maize varieties. In this study, the maize mutant sdw9 was characterized, which displays shorter stature and altered lateral root angle compared to WT, while showing potential to increase planting density and improve overall yield despite a slight reduction in single-ear yield. Employing positional cloning coupled with Re-seq techniques, we pinpointed a transposon insertion in the candidate gene ZmGRAS42, which encodes a GRAS transcription factor involved in BR signaling in maize. Transcriptome analysis revealed that ZmGRAS42 orchestrates the expression of several known dwarfing genes such as D8, Br2, and Na2, along with genes associated with cell wall organization, cell division, and cell cycle regulation, notably Cesa4, Cesa7, and Cyc11. Furthermore, identification of favorable ZmGRAS42 haplotypes linked to reduced plant height offers novel avenues for maize breeding strategies. These findings not only hold the potential for enhancing maize lodging resistance but also for optimizing land utilization through high-density planting practices.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GW3, encoding a member of the P450 subfamily, controls grain width by regulating the GA<sub>4</sub> content in spikelets of rice (Oryza sativa L.).","authors":"Xiaojing Dang, Qing Xu, Yulong Li, Shaojie Song, Changmin Hu, Chunyu Jing, Ying Zhang, Dezheng Wang, Delin Hong, Jianhua Jiang","doi":"10.1007/s00122-024-04751-5","DOIUrl":"10.1007/s00122-024-04751-5","url":null,"abstract":"<p><strong>Key message: </strong>A stable QTL, GW3, controlling grain width was identified in two populations. Its causal gene LOC_Os03g04680 was verified by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. Grain width (GW) is one of the key traits affecting grain size and determines grain yield and appearance quality in rice. Mining gene loci and elite alleles controlling GW is necessary. The GW phenotypes of the two populations were investigated in three environments, which showed abundant phenotypic variation. GW3, encoding a P450 subfamily protein, was identified and validated as a causal gene by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. The accessions with large GW values had high gene expression levels. In addition, the GW of the accessions with the GG allele was significantly greater than that of the accessions with the AA allele. The Hap 1 and Hap 3 were identified as elite haplotypes, which can increase GW. The expression levels of OsKO1, OsGA3ox1, OsGA20ox1 and OsGA20ox2 in the young panicle of A7444 were significantly greater than those in the young panicle of the mutants, indicating that GW3 may be involved in the gibberellins (GA) biosynthesis pathway to regulate GW. GA<sub>4</sub> content detection and electron scanning analysis revealed that GA<sub>4</sub> regulates GW by affecting glume cell size. These results provide new insights for studying the genetic mechanism of rice GW and provide a material basis for breeding high-yield rice varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}