{"title":"Genomic resources, opportunities, and prospects for accelerated improvement of millets.","authors":"Faizo Kasule, Oumar Diack, Modou Mbaye, Ronald Kakeeto, Bethany Fallon Econopouly","doi":"10.1007/s00122-024-04777-9","DOIUrl":"https://doi.org/10.1007/s00122-024-04777-9","url":null,"abstract":"<p><strong>Key message: </strong>Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"273"},"PeriodicalIF":4.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Deng, Peng Wang, Wenhui Bai, Zhihao Chen, Zhikui Cheng, Liwen Su, Xianglei Chen, Yeshun Bi, Rongjin Feng, Zhengguo Liu
{"title":"Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida).","authors":"Yan Deng, Peng Wang, Wenhui Bai, Zhihao Chen, Zhikui Cheng, Liwen Su, Xianglei Chen, Yeshun Bi, Rongjin Feng, Zhengguo Liu","doi":"10.1007/s00122-024-04781-z","DOIUrl":"10.1007/s00122-024-04781-z","url":null,"abstract":"<p><strong>Key message: </strong>The gene regulating fruit pedicel length in wax gourd was finely mapped to a 211 kb region on chromosome 8. The major gene, Bch08G017310 (BhGA2ox3), was identified through forward genetics. Fruit pedicel length (FPL) is a crucial trait in wax gourd (Benincasa hispida) that affects fruit development and cultivation management. However, the key regulatory genes and mechanisms of FPL in wax gourds remain poorly understood. In this study, we constructed an F<sub>2</sub> population using wax gourd plants with long fruit pedicels (GF-7-1-1) and short fruit pedicels (YSB-1-1-2) as parents. Through BSA-seq, we initially localised the FPL candidate gene to an 8.4 Mb region on chromosome 8, which was further narrowed down to a 1.1 Mb region via linkage analysis. A large F<sub>2</sub> population of 2163 individuals was used to screen for recombinants, and the locus was ultimately narrowed to within a 211 kb (62,299,856-62,511,174 bp) region. Sequence and expression analyses showed that Bch08G017310 (named BhGA2ox3) is a strong candidate gene for FPL in wax gourds. It encodes gibberellin (GA) 2-beta-dioxygenase, a member of the GA 2-oxidase (GA2ox) family. Cytology showed that GA treatment significantly elongated the fruit pedicels and enlarged the cells in the plants with short fruit pedicels. Ectopic expression of BhGA2ox3 showed that BhGA2ox3 overexpression in Arabidopsis thaliana resulted in significantly shorter fruit pedicels. This study lays a theoretical foundation for the regulatory mechanism of FPL in wax gourds and molecular breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"272"},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and segregation of two closely linked major QTLs for kernel row number in advanced maize-teosinte populations.","authors":"Jixing Ni, Dengguo Tang, Zhengjie Chen, Sijia Yang, Xueying Wang, Zhiqin Liu, Wujiao Deng, Haimei Wu, Chong You, Jinchang Yang, Pengxu Meng, Ruifan Bao, Tingzhao Rong, Jian Liu","doi":"10.1007/s00122-024-04780-0","DOIUrl":"10.1007/s00122-024-04780-0","url":null,"abstract":"<p><strong>Key message: </strong>Two closely linked novel loci, qKRN2-1 and qKRN2-2, associated with kernel row number were fine-mapped on chromosome 2, and a key candidate gene for qKRN2-1 was identified through expression analysis. Kernel row number (KRN) is a crucial factor influencing maize yield and serves as a significant target for maize breeding. The use of wild progenitor species can aid in identifying the essential traits for domestication and breeding. In this study, teosinte (MT1) served as the donor parent, the inbred maize line of Mo17 was used as the recurrent parent, we identified a major quantitative trait locus (QTL) for KRN, designated qKRN2, into two closely linked loci, qKRN2-1 and qKRN2-2. Here, fine mapping was performed to investigate two QTLs, qKRN2-1 and qKRN2-2, within a genomic range of 272 kb and 775 kb, respectively. This was achieved using a progeny test strategy in an advanced backcross population, with the two QTLs explaining 33.49% and 35.30% of the phenotypic variance. Molecular marker-assisted selection resulted in the development of two nearly isogenic lines (NILs), qKRN2-1 and qKRN2-2, which differed only in the segment containing the QTL. Notably, the maize (Mo17) alleles increased the KRN relative to teosinte by approximately 1.4 and 1.2 rows for qKRN2-1 and qKRN2-2, respectively. Zm00001d002989 encodes a cytokinin oxidase/dehydrogenase and its expression in the immature ears exhibited significant differences among the qKRN2-1 NILs. In situ hybridization localized Zm00001d002989 to the primordia of the inflorescence meristem and spikelet pair meristems, is predicted to be the causal gene of qKRN2-1. The findings of this study deepen our understanding of the genetic basis of KRN and hold significant potential for improving maize grain yields.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"271"},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructing training sets for genomic selection to identify superior genotypes in candidate populations.","authors":"Szu-Ping Chen, Wen-Hsiu Sung, Chen-Tuo Liao","doi":"10.1007/s00122-024-04766-y","DOIUrl":"10.1007/s00122-024-04766-y","url":null,"abstract":"<p><strong>Key message: </strong>Approaches for constructing training sets in genomic selection are proposed to efficiently identify top-performing genotypes from a breeding population. Identifying superior genotypes from a candidate population is a key objective in plant breeding programs. This study evaluates various methods for the training set optimization in genomic selection, with the goal of enhancing efficiency in discovering top-performing genotypes from a breeding population. Additionally, two approaches, inspired by classical optimal design criteria, are proposed to expand the search space for the best genotypes and compared with methods focusing on maximizing accuracy in breeding value prediction. Evaluation metrics such as normalized discounted cumulative gain, Spearman's rank correlation, and Pearson's correlation are employed to assess performance in both simulation studies and real trait analyses. Overall, for candidate populations lacking a strong subpopulation structure, a ridge regression-based method, referred to as <math> <mrow> <msup><mrow><mtext>MSPE</mtext></mrow> <mtext>Ridge</mtext></msup> <mo>,</mo></mrow> </math> is recommended. For candidate populations with a strong subpopulation structure, a heuristic-based version of generalized coefficient of determination <math> <mfenced><msub><mtext>CD</mtext> <mrow><mtext>mean</mtext> <mo>(</mo> <mtext>v</mtext> <mn>2</mn> <mo>)</mo></mrow> </msub> </mfenced> </math> and a D-optimality-like method that maximizes overall genomic variation <math><mrow><mo>(</mo> <msub><mtext>GV</mtext> <mtext>overall</mtext></msub> <mo>)</mo></mrow> </math> are preferred approaches for the primary objective of plant breeding. For populations with a large number of candidates, a proposed ranking method ( <math><msub><mtext>GV</mtext> <mtext>average</mtext></msub> </math> ) can first be used to down-scale the candidate population, after which a heuristic-based method is employed to identify the best genotypes. Notably, the proposed <math><msub><mtext>CD</mtext> <mrow><mtext>mean</mtext> <mo>(</mo> <mtext>v</mtext> <mn>2</mn> <mo>)</mo></mrow> </msub> </math> has been verified to be equivalent to the original version, known as <math><msub><mtext>CD</mtext> <mtext>mean</mtext></msub> </math> , but its implementation is much more computationally efficient.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"270"},"PeriodicalIF":4.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhui Wang, Yanyan Tang, Jin Li, Juanyu Zhang, Furong Huang, Qiang Li, Baowei Chen, Li'ao Zhang, Tao Li, Haili Zhang, Junjun Liang, Guangbing Deng, Wei Li, Hai Long
{"title":"Fine mapping and candidate gene mining of QSc/Sl.cib-7H for spike compactness and length and its pleiotropic effects on yield-related traits in barley (Hordeum vulgare L.).","authors":"Jinhui Wang, Yanyan Tang, Jin Li, Juanyu Zhang, Furong Huang, Qiang Li, Baowei Chen, Li'ao Zhang, Tao Li, Haili Zhang, Junjun Liang, Guangbing Deng, Wei Li, Hai Long","doi":"10.1007/s00122-024-04779-7","DOIUrl":"https://doi.org/10.1007/s00122-024-04779-7","url":null,"abstract":"<p><strong>Key message: </strong>A major locus for spike compactness and length was mapped on chromosome 7H and its pleiotropic effects, candidate genes and transcriptional regulatory network were analyzed. Spike compactness (SC) and length (SL) are important traits of barley (Hordeum vulgare L.) due to their close association with grain yield. In this study, a major SC and SL locus QSc/Sl.cib-7H was primarily identified on chromosome 7H by bulked segregant analysis, and further fine mapped to a recombination cold spot expanding 244.36-388.09 Mb by developing a secondary population using residual heterozygous lines. This region is much more accurate than previously reported spike compactness loci on chromosome 7H. The strong effects of QSc/Sl.cib-7H on SL and SC were validated in two pair of near isogenic lines (NILs) and diverse genetic backgrounds. QSc/Sl.cib-7H exhibited pleiotropic effects on plant height (PH), thousand grain weight and grain length, and did not significantly influence the spikelet number of main spike (SMS) and grain width. Transcriptome analysis based on NILs showed that regulation of SC and SL might be related to the plant circadian rhythm pathway. The candidate genes were mined by analyzing variants and expression patterns of genes in the target region employing multiple genome and transcriptome data. This study takes a further step towards cloning of QSc/Sl.cib-7H, and the data obtained and the developed molecular markers will facilitate its utilization in barley breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"269"},"PeriodicalIF":4.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Li, Yunpeng Wang, Weihua Qiao, Ze Zhu, Zhiyuan Wang, Yunlu Tian, Shijia Liu, Jianmin Wan, Linglong Liu
{"title":"Identification of a novel locus qGW12/OsPUB23 regulating grain shape and weight in rice (Oryza sativa L.).","authors":"Hang Li, Yunpeng Wang, Weihua Qiao, Ze Zhu, Zhiyuan Wang, Yunlu Tian, Shijia Liu, Jianmin Wan, Linglong Liu","doi":"10.1007/s00122-024-04776-w","DOIUrl":"https://doi.org/10.1007/s00122-024-04776-w","url":null,"abstract":"<p><strong>Key message: </strong>Key message A major quantitative trait locus (qGW12) for grain shape and weight has been isolated in rice, corresponding to LOC_Os12g17900/OsPUB23, and its encoded protein interacts with OsMADS1. Grain shape in rice is an important trait that influences both yield and quality. The primary determinants of grain shape are quantitative trait loci (QTLs) inherited from natural variation in crops. In recent years, much attention has been paid to the molecular role of QTLs in regulating grain shape and weight. In this study, we report the cloning and characterization of qGW12, a major QTL regulating grain shape and weight in rice, using a series of chromosome fragment substitution lines (CSSLs) derived from Oryza sativa indica cultivar 9311 (acceptor) and Oryza rufipogon Griff (donor). One CSSL line, Q187, harboring the introgression of qGW12, exhibited a significant decrease in grain-shape-related traits (including grain length and width) and thousand-grain weight compared to the cultivar 9311. Subsequent backcrossing of Q187 with 9311 resulted in the generation of secondary segregating populations, which were used to fine-map qGW12 to a 24-kb region between markers Seq-44 and Seq-48. Our data indicated that qGW12 encodes a previously unreported U-box type E3 ubiquitin ligase, designated OsPUB23, which exhibited E3 ubiquitin ligase activity. Overexpression of OsPUB23 in rice resulted in higher plant yield than the wild type due to an increase in grain size and weight. Conversely, loss of OsPUB23 function resulted in the opposite tendency. Yeast two-hybrid screening and split luciferase complementation assays revealed that OsPUB23 interacts with OsMADS1. The functional characterization of OsPUB23 provides new genetic resources for improving of grain yield and quality in crops.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"267"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and validation of two quantitative trait loci showing pleiotropic effect on multiple grain-related traits in bread wheat (Triticum aestivum L.).","authors":"Wenjing Hu, Junchao You, Rui Yong, Die Zhao, Dongshen Li, Zunjie Wang, Jizeng Jia","doi":"10.1007/s00122-024-04778-8","DOIUrl":"https://doi.org/10.1007/s00122-024-04778-8","url":null,"abstract":"<p><strong>Key message: </strong>QKl/Tgw/Gns.yaas-2D associates with KL, TGW, and GNS, and QKl/Tgw.yaas-5A associates with KL and TGW. Significantly pleiotropic and additive effects of these two QTL were validated. The YM5 allele both at QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A was proved to be the best allelic combination for improving yield potential. Kernel length (KL), kernel width (KW), thousand grain weight (TGW), and grain number per spike (GNS) play important roles in the yield improvement of wheat. In this study, one recombinant inbred line (RIL) derived from a cross between Yangmai 5 (YM5) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) associated with KL, KW, TGW, and GNS across three years. Two pleiotropic QTL namely QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A were located in two genomic regions on chromosomes 2D and 5A, respectively. Breeder-friendly Kompetitive Allele-Specific PCR (KASP) markers for QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A were developed and validated in a set of 246 wheat cultivars/lines. Analysis of allelic combinations indicated that the YM5 allele both at QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A is probably the best one to promote TGW, GNS, and grain weight per spike. Based on the analysis of gene annotation, sequence variations, expression patterns, and GO enrichment, twenty-five and twenty-four candidate genes of QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A, respectively, were identified. These results provide the basis of fine-mapping the target QTL and marker-assisted selection in wheat yield-breeding programs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"268"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"QTL mapping and genome-wide association analysis reveal genetic loci and candidate gene for resistance to gray leaf spot in tropical and subtropical maize germplasm.","authors":"Yanhui Pan, Fuyan Jiang, Ranjan K Shaw, Jiachen Sun, Linzhuo Li, Xingfu Yin, Yaqi Bi, Jiao Kong, Haiyang Zong, Xiaodong Gong, Babar Ijaz, Xingming Fan","doi":"10.1007/s00122-024-04764-0","DOIUrl":"10.1007/s00122-024-04764-0","url":null,"abstract":"<p><strong>Key message: </strong>Using QTL mapping and GWAS, two candidate genes (Zm00001d051039 and Zm00001d051147) were consistently identified across the three different environments and BLUP values. GWAS analysis identified the candidate gene, Zm00001d044845. These genes were subsequently validated to exhibit a significant association with maize gray leaf spot (GLS) resistance. Gray leaf spot (GLS) is a major foliar disease of maize (Zea mays L.) that causes significant yield losses worldwide. Understanding the genetic mechanisms underlying gray leaf spot resistance is crucial for breeding high-yielding and disease-resistant varieties. In this study, eight tropical and subtropical germplasms were crossed with the temperate germplasm Ye107 to develop a nested association mapping (NAM) population comprising 1,653 F2:8 RILs, consisting of eight recombinant inbred line (RIL) subpopulations, using the single-seed descent method. The NAM population was evaluated for GLS resistance in three different environments, and genotyping by sequencing of the NAM population generated 593,719 high-quality single-nucleotide polymorphisms (SNPs). Linkage analysis and genome-wide association studies (GWASs) were conducted to identify candidate genes regulating GLS resistance in maize. Both analyses identified 25 QTLs and 149 SNPs that were significantly associated with GLS resistance. Candidate genes were screened 20 Kb upstream and downstream of the significant SNPs, and three novel candidate genes (Zm00001d051039, Zm00001d051147, and Zm00001d044845) were identified. Zm00001d051039 and Zm00001d051147 were located on chromosome 4 and co-localized in both linkage (qGLS4-1 and qGLS4-2) and GWAS analyses. SNP-138,153,206 was located 0.499 kb downstream of the candidate gene Zm00001d051039, which encodes the protein IN2-1 homolog B, a homolog of glutathione S-transferase (GST). GSTs and protein IN2-1 homolog B scavenge reactive oxygen species under various stress conditions, and GSTs are believed to protect plants from a wide range of biotic and abiotic stresses by detoxifying reactive electrophilic compounds. Zm00001d051147 encodes a probable beta-1,4-xylosyltransferase involved in the biosynthesis of xylan in the cell wall, enhancing resistance. SNP-145,813,215 was located 2.69 kb downstream of the candidate gene. SNP-5,043,412 was consistently identified in three different environments and BLUP values and was located 8.788 kb downstream of the candidate gene Zm00001d044845 on chromosome 9. Zm00001d044845 encodes the U-box domain-containing protein 4 (PUB4), which is involved in regulating plant immunity. qRT-PCR analysis showed that the relative expression levels of the three candidate genes were significantly upregulated in the leaves of the TML139 (resistant) parent, indicating that these three candidate genes could be associated with resistance to GLS. The findings of this study are significant for marker-assisted breeding aimed at enhancing resistance to GLS i","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"266"},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krishna Acharya, Zhaohui Liu, Jeffrey Schachterle, Pooja Kumari, Fazal Manan, Steven S Xu, Andrew J Green, Justin D Faris
{"title":"Genetic mapping of QTLs for resistance to bacterial leaf streak in hexaploid wheat.","authors":"Krishna Acharya, Zhaohui Liu, Jeffrey Schachterle, Pooja Kumari, Fazal Manan, Steven S Xu, Andrew J Green, Justin D Faris","doi":"10.1007/s00122-024-04767-x","DOIUrl":"https://doi.org/10.1007/s00122-024-04767-x","url":null,"abstract":"<p><strong>Key message: </strong>Robust QTLs conferring resistance to bacterial leaf streak in wheat were mapped on chromosomes 3B and 5A from the variety Boost and on chromosome 7D from the synthetic wheat line W-7984. Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa poses a significant threat to global wheat production. High levels of BLS resistance are rare in hexaploid wheat. Here, we screened 101 diverse wheat genotypes under greenhouse conditions to identify new sources of BLS resistance. Five lines showed good levels of resistance including the wheat variety Boost and the synthetic hexaploid wheat line W-7984. Recombinant inbred populations derived from the cross of Boost × ND830 (BoostND population) and W-7984 × Opata 85 (ITMI population) were subsequently evaluated in greenhouse and field experiments to investigate the genetic basis of resistance. QTLs on chromosomes 3B, 5A, and 5B were identified in the BoostND population. The 3B and 5A QTLs were significant in all environments, but the 3B QTL was the strongest under greenhouse conditions explaining 38% of the phenotypic variation, and the 5A QTL was the most significant in the field explaining up to 29% of the variation. In the ITMI population, a QTL on chromosome 7D explained as much as 46% of the phenotypic variation in the greenhouse and 18% in the field. BLS severity in both populations was negatively correlated with days to heading, and some QTLs for these traits overlapped, which explained the tendency of later maturing lines to have relatively higher levels of BLS resistance. Markers associated with the QTLs were converted to KASP markers, which will aid in the deployment of the QTLs into elite lines for the development of BLS-resistant wheat varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"265"},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fine mapping of a major co-localized QTL associated with self-incompatibility identified in two F<sub>2</sub> populations (broccoli × cauliflower and cauliflower × Chinese kale).","authors":"Yusen Shen, Jiansheng Wang, Xiaoguang Sheng, Huifang Yu, Ranjan K Shaw, Mengfei Song, Shiyi Cai, Shuting Qiao, Fan Lin, Honghui Gu","doi":"10.1007/s00122-024-04770-2","DOIUrl":"https://doi.org/10.1007/s00122-024-04770-2","url":null,"abstract":"<p><strong>Key message: </strong>A major QTL responsible for self-incompatibility was stably identified in two F<sub>2</sub> populations. Through fine mapping and qRT-PCR analysis, ARK3 emerged as the most promising candidate gene, playing a pivotal role in regulating self-incompatibility in Brassica oleracea. Self-incompatibility (SI) is a common phenomenon in Brassica oleracea species, which can maintain genetic diversity but will also limit seed production. Although the S locus has been extensively studied in Arabidopsis and some Brassicaceae crops, map-based cloning of self-incompatibility genes has not been conducted in Brassica oleracea, such as cauliflower and broccoli. In the present study, we identified a major co-localized QTL on chromosome C6 that control SI in two F<sub>2</sub> populations derived from intervarietal crosses: broccoli × cauliflower (CL_F<sub>2</sub>) and cauliflower × Chinese kale (CJ_F<sub>2</sub>). Subsequently, this QTL was narrowed down to 168.5 Kb through fine mapping using 3,429 F<sub>2:3</sub> progenies and 12 available KASP markers. Within this 168.5 Kb region, BolC6t39084H, a homologue of Arabidopsis ARK3, could be a candidate gene that plays a key role in regulating SI in B. oleracea species. This finding can pave the way for an in-depth understanding of the molecular mechanisms underlying SI, and will contribute to the seed production of B. oleracea vegetables.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"264"},"PeriodicalIF":4.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}