Theoretical and Applied Genetics最新文献

筛选
英文 中文
A β-ketoacyl-CoA synthase encoded by DDP1 controls rice anther dehiscence and pollen fertility by maintaining lipid homeostasis in the tapetum. DDP1编码的β-酮酰基辅酶A合成酶通过维持绒毡层脂质稳态控制水稻花药开裂和花粉育性。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-12-03 DOI: 10.1007/s00122-024-04786-8
Yibo Xu, Shixu Zhou, Jingfei Tian, Wenfeng Zhao, Jianxin Wei, Juan He, Wenye Tan, Lianguang Shang, Xinhua He, Rongbai Li, Yongfei Wang, Baoxiang Qin
{"title":"A β-ketoacyl-CoA synthase encoded by DDP1 controls rice anther dehiscence and pollen fertility by maintaining lipid homeostasis in the tapetum.","authors":"Yibo Xu, Shixu Zhou, Jingfei Tian, Wenfeng Zhao, Jianxin Wei, Juan He, Wenye Tan, Lianguang Shang, Xinhua He, Rongbai Li, Yongfei Wang, Baoxiang Qin","doi":"10.1007/s00122-024-04786-8","DOIUrl":"10.1007/s00122-024-04786-8","url":null,"abstract":"<p><strong>Key message: </strong>DDP1, encoding a β-Ketoacyl-CoA Synthase, regulates rice anther dehiscence and pollen fertility by affecting the deposition of lipid on anther epidermis and pollen wall. Anther dehiscence and pollen fertility are crucial for male fertility in rice. Here, we studied the function of Defective in Dehiscence and Pollen1 (DDP1), a novel member of the KCS family in rice, in regulating anther dehiscence and pollen fertility. DDP1 encodes an endoplasmic reticulum (ER)-localized protein and is ubiquitously expressed in various organs, predominately in the microspores and tapetum. The ddp1 mutant exhibited partial male sterility attributed to defective anther dehiscence and pollen fertility, which was notably distinct from those observed in Arabidopsis thaliana and rice mutants associated with lipid metabolism. Mutations of DDP1 altered the content and composition of wax on anther epidermis and pollen wall, causing abnormalities in their morphology. Moreover, genes implicated in lipid metabolism, pollen development, and anther dehiscence exhibited significantly altered expression levels in the ddp1 mutant. These findings indicate that DDP1 controls anther dehiscence and pollen fertility to ensure normal male development by modulating lipid homeostasis in the tapetum, thereby enhancing our understanding of the mechanisms underlying rice anther dehiscence and pollen fertility.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"1"},"PeriodicalIF":4.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical prediction of genetic contribution across multiple recurrent backcrossing generations. 多代回交遗传贡献的分析预测。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-30 DOI: 10.1007/s00122-024-04774-y
Temitayo Ajayi, Jason LaCombe, Güven Ince, Trevor Yeats
{"title":"Analytical prediction of genetic contribution across multiple recurrent backcrossing generations.","authors":"Temitayo Ajayi, Jason LaCombe, Güven Ince, Trevor Yeats","doi":"10.1007/s00122-024-04774-y","DOIUrl":"10.1007/s00122-024-04774-y","url":null,"abstract":"<p><strong>Key message: </strong>We derive formulas for the residual donor genome content during trait introgression via recurrent backcrossing and use these formulas to predict (without simulation) residual donor genome content for five future generations. Trait introgression is a common method for introducing valuable genes or alleles into breeding populations and inbred cultivars. The particular breeding scheme is usually designed to maximize the genetic similarity of the converted lines to the recurrent parent while minimizing cost and time to recover the near isogenic lines. Key variables include the number of generations and crosses and how to apply genotyping and selection. One form of trait introgression, which is our focus, involves an initial cross of an elite, homozygous recurrent parent line with a non-recurrent, homozygous donor line. The descendants of this cross are backcrossed with the recurrent parent for several generation before self-pollination in the final generation to recover lines with the alleles of interest. In this paper, we derive analytical formulas that characterize the stochastic nature of residual donor genome content during this form of trait introgression. The development of these formulas expands the mathematical methods one can integrate into breeding design. In particular, we show we can use our formulas in a novel mathematical program to allocate resources to optimize the reduction of residual donor genome content.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"279"},"PeriodicalIF":4.4,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. QTL-seq和QTL图谱确定了绿豆(Vigna radiata)抗Cercospora叶斑病(Cercospora canescens)的新位点,以及作为抗性候选基因的受体样蛋白12(RLP12)基因簇。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-27 DOI: 10.1007/s00122-024-04782-y
Makawan Srichan, Kularb Laosatit, Yun Lin, Xingxing Yuan, Xin Chen, Prakit Somta
{"title":"QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance.","authors":"Makawan Srichan, Kularb Laosatit, Yun Lin, Xingxing Yuan, Xin Chen, Prakit Somta","doi":"10.1007/s00122-024-04782-y","DOIUrl":"10.1007/s00122-024-04782-y","url":null,"abstract":"<p><strong>Key message: </strong>QTL-seq, linkage mapping, and whole-genome resequencing revealed a new locus (qCLS5.1) controlling Cercospora canescens resistance in mungbean and Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. Cercospora leaf spot (CLS) disease, caused by Cercospora canescens, is a common disease of mungbean (Vigna radiata). In this study, the genetics of CLS resistance was investigated in a new source of resistance (accession V2817) and the resistance was finely mapped to identify candidate genes. F<sub>2</sub> and F<sub>2:3</sub> populations of the cross V1197 (susceptible) × V2718 and a BC<sub>1</sub>F<sub>1</sub> population of the cross V1197 × (V1197 × V2817) were used in this study. Segregation analysis suggested that the resistance is controlled by a single dominant gene. QTL-seq using F<sub>2</sub> individuals revealed that a single QTL (designated qCLS5.1) on chromosome 5 controlled the resistance. The qCLS5.1 was confirmed in the F<sub>2:3</sub> and BC<sub>1</sub>F<sub>1</sub> populations by QTL analysis. Fine mapping using 978 F<sub>2</sub> individuals localized qCLS5.1 to a 48.94 Kb region containing three tandemly duplicated Receptor-like protein 12 (RLP12) genes. Whole-genome resequencing and alignment of V1197 and V2817 revealed polymorphisms causing amino acid changes and premature stop codons in the three RLP12 genes. Collectively, these results show that qCLS5.1 is a new locus for CLS resistance in mungbean, and a cluster of RLP12 genes are candidate genes for the resistance. The new locus qCLS5.1 will be useful for molecular breeding of durable CLS-resistant mungbean cultivars.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"278"},"PeriodicalIF":4.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytological mapping of a powdery mildew resistance locus PmRc1 based on wheat-Roegneria ciliaris structural rearrangement library. 基于小麦-Roegneria ciliaris 结构重排文库的白粉病抗性基因座 PmRc1 的细胞学图谱。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-22 DOI: 10.1007/s00122-024-04768-w
Menghao Cheng, Huajian Zhang, Yao Zhang, Xiong Tang, Zongkuan Wang, Xu Zhang, Xinying Song, Xingyue Li, Huimin Cui, Tong Wang, Rongrong Song, Jin Xiao, Haiyan Wang, Xiue Wang
{"title":"Cytological mapping of a powdery mildew resistance locus PmRc1 based on wheat-Roegneria ciliaris structural rearrangement library.","authors":"Menghao Cheng, Huajian Zhang, Yao Zhang, Xiong Tang, Zongkuan Wang, Xu Zhang, Xinying Song, Xingyue Li, Huimin Cui, Tong Wang, Rongrong Song, Jin Xiao, Haiyan Wang, Xiue Wang","doi":"10.1007/s00122-024-04768-w","DOIUrl":"10.1007/s00122-024-04768-w","url":null,"abstract":"<p><strong>Key message: </strong>A powdery mildew (Pm) resistance locus PmRc1 was identified and transferred from Roegneria ciliaris into wheat. Two compensative translocation lines carrying PmRc1 were developed. Powdery mildew (Pm), caused by the biotrophic fungal pathogen Blumeria graminis f.sp. tritici (Bgt), is a global destructive disease of bread wheat (Triticum aestivum L.). Identifying and utilizing new Pm resistance gene(s) is the most fundamental work for disease control. Roegneria ciliaris (2n = 4 x= 28, genome S<sup>c</sup>S<sup>c</sup>Y<sup>c</sup>Y<sup>c</sup>) is a wild relative species of cultivated wheat. In this work, we evaluated wheat-R. ciliaris disomic chromosome addition lines for Pm resistance in multiple years. The introduction of R. ciliaris chromosome 1S<sup>c</sup> into wheat enhanced resistance. The resistance locus on 1S<sup>c</sup> was designated as PmRc1. To cytologically map PmRc1, we induced structural rearrangements using ion irradiation and increasing homoeologous chromosomal recombination. The identified 43 1S<sup>c</sup> translocation or deletion lines were used to construct 1S<sup>c</sup> cytological bin map by marker analysis using 111 molecular markers. Based on the Pm resistance of the characterized structural rearrangement lines, the PmRc1 locus was cytologically mapped to bin 1S<sup>c</sup>S-8 of 1S<sup>c</sup> short arm, flanked by markers CMH93-2 and CMH114-1. Two compensatory chromosomal translocation lines (T1S<sup>c</sup>S <math><mo>·</mo></math> 1BL and T1S<sup>c</sup>S-1AS <math><mo>·</mo></math> 1AL) carrying PmRc1 were developed and assessed for their agronomic traits. Translocation chromosome T1S<sup>c</sup>S <math><mo>·</mo></math> 1BL had enhanced Pm resistance accompanied by negative effects on grain number and single plant yield. Translocation chromosome T1S<sup>c</sup>S-1AS <math><mo>·</mo></math> 1AL had enhanced Pm resistance and increased spikelet number per spike, without any obvious negative effect on other tested traits. Thus, T1S<sup>c</sup>S-1AS <math><mo>·</mo></math> 1AL is recommended preferentially used in wheat breeding for Pm resistance.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"276"},"PeriodicalIF":4.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. 八系小麦 MAGIC 群体可对花期基因座进行精细测绘,为花期的遗传控制提供了新的见解。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-22 DOI: 10.1007/s00122-024-04787-7
Laure Fourquet, Tobias Barber, Camila Campos-Mantello, Phil Howell, Beata Orman-Ligeza, Lawrence Percival-Alwyn, Gemma A Rose, Hester Sheehan, Tally I C Wright, Friedrich Longin, Tobias Würschum, Dario Novoselovic, Andy J Greenland, Ian J Mackay, James Cockram, Alison R Bentley
{"title":"An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time.","authors":"Laure Fourquet, Tobias Barber, Camila Campos-Mantello, Phil Howell, Beata Orman-Ligeza, Lawrence Percival-Alwyn, Gemma A Rose, Hester Sheehan, Tally I C Wright, Friedrich Longin, Tobias Würschum, Dario Novoselovic, Andy J Greenland, Ian J Mackay, James Cockram, Alison R Bentley","doi":"10.1007/s00122-024-04787-7","DOIUrl":"10.1007/s00122-024-04787-7","url":null,"abstract":"<p><p>Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.) using an eight-founder multi-parent advanced generation intercross (MAGIC) population. Flowering time data was collected from field trials across six growing seasons in the United Kingdom, followed by genetic analysis using a combination of linear modelling, simple interval mapping and composite interval mapping, using either single markers or founder haplotype probabilities. We detected 57 quantitative trait loci (QTL) across three growth stages linked to flowering time, of which 17 QTL were identified only when the major photoperiod response locus Ppd-D1 was included as a covariate. Of the 57 loci, ten were identified using all genetic mapping approaches and classified as 'major' QTL, including homoeologous loci on chromosomes 1B and 1D, and 4A and 4B. Additional Earliness per se flowering time QTL were identified, along with growth stage- and year-specific effects. Furthermore, six of the main-effect QTL were found to interact epistatically with Ppd-D1. Finally, we exploited residual heterozygosity in the MAGIC recombinant inbred lines to Mendelize the Earliness per se QTL QFt.niab-5A.03, which was confirmed to modulate flowering time by at least four days. This work provides detailed understanding of the genetic control of phenological variation within varieties relevant to the north-western European wheat genepool, aiding informed manipulation of flowering time in wheat breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"277"},"PeriodicalIF":4.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance. 堆叠瓦维洛夫小麦系列中的有益单倍型,加快多病抗性育种。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-21 DOI: 10.1007/s00122-024-04784-w
Jingyang Tong, Zerihun T Tarekegn, Dilani Jambuthenne, Samir Alahmad, Sambasivam Periyannan, Lee Hickey, Eric Dinglasan, Ben Hayes
{"title":"Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance.","authors":"Jingyang Tong, Zerihun T Tarekegn, Dilani Jambuthenne, Samir Alahmad, Sambasivam Periyannan, Lee Hickey, Eric Dinglasan, Ben Hayes","doi":"10.1007/s00122-024-04784-w","DOIUrl":"10.1007/s00122-024-04784-w","url":null,"abstract":"<p><strong>Key message: </strong>We revealed the neglected genetic relationships of resistance for six major wheat diseases and established a haploblock-based catalogue with novel forms of resistance by multi-trait haplotype characterisation. Genetic potential to improve multiple disease resistance was highlighted through haplotype stacking simulations. Wheat production is threatened by numerous fungal diseases, but the potential to breed for multiple disease resistance (MDR) mechanisms is yet to be explored. Here, significant global genetic correlations and underlying local genomic regions were identified in the Vavilov wheat diversity panel for six major fungal diseases, including biotrophic leaf rust (LR), yellow rust (YR), stem rust (SR), hemibiotrophic crown rot (CR), and necrotrophic tan spot (TS) and Septoria nodorum blotch (SNB). By adopting haplotype-based local genomic estimated breeding values, derived from an integrated set of 34,899 SNP and DArT markers, we established a novel haplotype catalogue for resistance to the six diseases in over 20 field experiments across Australia and Ethiopia. Haploblocks with high variances of haplotype effects in all environments were identified for three rusts, and pleiotropic haploblocks were identified for at least two diseases, with four haploblocks affecting all six diseases. Through simulation, we demonstrated that stacking optimal haplotypes for one disease could improve resistance substantially, but indirectly affected resistance for other five diseases, which varied depending on the genetic correlation with the non-target disease trait. On the other hand, our simulation results combining beneficial haplotypes for all diseases increased resistance to LR, YR, SR, CR, TS, and SNB, by up to 48.1%, 35.2%, 29.1%, 12.8%, 18.8%, and 32.8%, respectively. Overall, our results highlight the genetic potential to improve MDR in wheat. The haploblock-based catalogue with novel forms of resistance provides a useful resource to guide desirable haplotype stacking for breeding future wheat cultivars with MDR.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"274"},"PeriodicalIF":4.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting light energy utilization strategies in Populus simonii through multitrait-GWAS: insights from stochastic differential models. 通过多特征-GWAS探索杨树的光能利用策略:随机微分模型的启示。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-21 DOI: 10.1007/s00122-024-04775-x
Junze Jiang, Ziyang Zhou, Kaiyan Lu, Huiying Gong, Deqiang Zhang, Qing Fang, Xiao-Yu Zhang, Yuepeng Song
{"title":"Exploiting light energy utilization strategies in Populus simonii through multitrait-GWAS: insights from stochastic differential models.","authors":"Junze Jiang, Ziyang Zhou, Kaiyan Lu, Huiying Gong, Deqiang Zhang, Qing Fang, Xiao-Yu Zhang, Yuepeng Song","doi":"10.1007/s00122-024-04775-x","DOIUrl":"10.1007/s00122-024-04775-x","url":null,"abstract":"<p><p>The photosynthetic phenotype of trees undergoes changes and interactions that reflect their abilities to exploit light energy. Environmental disturbances and genetic factors have been recognized as influencing these changes and interactions, yet our understanding of the underlying biological mechanisms remains limited, particularly in stochastic environments. Here, we developed a high-dimensional stochastic differential framework (HDSD) for the genome-wide mapping of quantitative trait loci (QTLs) that regulate competition or cooperation in environment-dependent phenotypes. The framework incorporates random disturbances into system mapping, a dynamic model that views multiple traits as a system. Not only does this framework describe how QTLs regulate a single phenotype, but also how they regulate multiple phenotypes and how they interact with each other to influence phenotypic variations. To validate the proposed model, we conducted mapping experiments using chlorophyll fluorescence phenotype data from Populus simonii. Through this analysis, we identified several significant QTLs that may play a crucial role in photosynthesis in stochastic environments, in which 76 significant QTLs have already been reported to encode proteins or enzymes involved in photosynthesis through functional annotation. The constructed genetic regulatory network allows for a more comprehensive analysis of the internal genetic interactions of the photosynthesis process by visualizing the relationships between SNPs. This study shows a new way to understand the genetic mechanisms that govern the photosynthetic phenotype of trees, focusing on how environmental stochasticity and genetic variation interact to shape their light energy utilization strategies.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"275"},"PeriodicalIF":4.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic resources, opportunities, and prospects for accelerated improvement of millets. 加速改良黍稷的基因组资源、机遇和前景。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-20 DOI: 10.1007/s00122-024-04777-9
Faizo Kasule, Oumar Diack, Modou Mbaye, Ronald Kakeeto, Bethany Fallon Econopouly
{"title":"Genomic resources, opportunities, and prospects for accelerated improvement of millets.","authors":"Faizo Kasule, Oumar Diack, Modou Mbaye, Ronald Kakeeto, Bethany Fallon Econopouly","doi":"10.1007/s00122-024-04777-9","DOIUrl":"10.1007/s00122-024-04777-9","url":null,"abstract":"<p><strong>Key message: </strong>Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"273"},"PeriodicalIF":4.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida). 蜡葫芦果梗长度候选基因 BhGA2ox3 的精细图谱绘制和功能验证
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-18 DOI: 10.1007/s00122-024-04781-z
Yan Deng, Peng Wang, Wenhui Bai, Zhihao Chen, Zhikui Cheng, Liwen Su, Xianglei Chen, Yeshun Bi, Rongjin Feng, Zhengguo Liu
{"title":"Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida).","authors":"Yan Deng, Peng Wang, Wenhui Bai, Zhihao Chen, Zhikui Cheng, Liwen Su, Xianglei Chen, Yeshun Bi, Rongjin Feng, Zhengguo Liu","doi":"10.1007/s00122-024-04781-z","DOIUrl":"10.1007/s00122-024-04781-z","url":null,"abstract":"<p><strong>Key message: </strong>The gene regulating fruit pedicel length in wax gourd was finely mapped to a 211 kb region on chromosome 8. The major gene, Bch08G017310 (BhGA2ox3), was identified through forward genetics. Fruit pedicel length (FPL) is a crucial trait in wax gourd (Benincasa hispida) that affects fruit development and cultivation management. However, the key regulatory genes and mechanisms of FPL in wax gourds remain poorly understood. In this study, we constructed an F<sub>2</sub> population using wax gourd plants with long fruit pedicels (GF-7-1-1) and short fruit pedicels (YSB-1-1-2) as parents. Through BSA-seq, we initially localised the FPL candidate gene to an 8.4 Mb region on chromosome 8, which was further narrowed down to a 1.1 Mb region via linkage analysis. A large F<sub>2</sub> population of 2163 individuals was used to screen for recombinants, and the locus was ultimately narrowed to within a 211 kb (62,299,856-62,511,174 bp) region. Sequence and expression analyses showed that Bch08G017310 (named BhGA2ox3) is a strong candidate gene for FPL in wax gourds. It encodes gibberellin (GA) 2-beta-dioxygenase, a member of the GA 2-oxidase (GA2ox) family. Cytology showed that GA treatment significantly elongated the fruit pedicels and enlarged the cells in the plants with short fruit pedicels. Ectopic expression of BhGA2ox3 showed that BhGA2ox3 overexpression in Arabidopsis thaliana resulted in significantly shorter fruit pedicels. This study lays a theoretical foundation for the regulatory mechanism of FPL in wax gourds and molecular breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"272"},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and segregation of two closely linked major QTLs for kernel row number in advanced maize-teosinte populations. 在先进的玉米-teosinte 群体中鉴定和分离两个密切相关的主要 QTLs(核仁行数)。
IF 4.4 1区 农林科学
Theoretical and Applied Genetics Pub Date : 2024-11-18 DOI: 10.1007/s00122-024-04780-0
Jixing Ni, Dengguo Tang, Zhengjie Chen, Sijia Yang, Xueying Wang, Zhiqin Liu, Wujiao Deng, Haimei Wu, Chong You, Jinchang Yang, Pengxu Meng, Ruifan Bao, Tingzhao Rong, Jian Liu
{"title":"Identification and segregation of two closely linked major QTLs for kernel row number in advanced maize-teosinte populations.","authors":"Jixing Ni, Dengguo Tang, Zhengjie Chen, Sijia Yang, Xueying Wang, Zhiqin Liu, Wujiao Deng, Haimei Wu, Chong You, Jinchang Yang, Pengxu Meng, Ruifan Bao, Tingzhao Rong, Jian Liu","doi":"10.1007/s00122-024-04780-0","DOIUrl":"10.1007/s00122-024-04780-0","url":null,"abstract":"<p><strong>Key message: </strong>Two closely linked novel loci, qKRN2-1 and qKRN2-2, associated with kernel row number were fine-mapped on chromosome 2, and a key candidate gene for qKRN2-1 was identified through expression analysis. Kernel row number (KRN) is a crucial factor influencing maize yield and serves as a significant target for maize breeding. The use of wild progenitor species can aid in identifying the essential traits for domestication and breeding. In this study, teosinte (MT1) served as the donor parent, the inbred maize line of Mo17 was used as the recurrent parent, we identified a major quantitative trait locus (QTL) for KRN, designated qKRN2, into two closely linked loci, qKRN2-1 and qKRN2-2. Here, fine mapping was performed to investigate two QTLs, qKRN2-1 and qKRN2-2, within a genomic range of 272 kb and 775 kb, respectively. This was achieved using a progeny test strategy in an advanced backcross population, with the two QTLs explaining 33.49% and 35.30% of the phenotypic variance. Molecular marker-assisted selection resulted in the development of two nearly isogenic lines (NILs), qKRN2-1 and qKRN2-2, which differed only in the segment containing the QTL. Notably, the maize (Mo17) alleles increased the KRN relative to teosinte by approximately 1.4 and 1.2 rows for qKRN2-1 and qKRN2-2, respectively. Zm00001d002989 encodes a cytokinin oxidase/dehydrogenase and its expression in the immature ears exhibited significant differences among the qKRN2-1 NILs. In situ hybridization localized Zm00001d002989 to the primordia of the inflorescence meristem and spikelet pair meristems, is predicted to be the causal gene of qKRN2-1. The findings of this study deepen our understanding of the genetic basis of KRN and hold significant potential for improving maize grain yields.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"271"},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信