Fengli Zhao, Chengqi Cui, Wenxing Wei, Zhenwei Du, Ke Wu, Xiaolin Jiang, Yongzhan Zheng, Yanyang Liu, Hongxian Mei, Haiyang Zhang
{"title":"The candidate gene SibHLHA regulates anthocyanin-driven purple pigmentation in Sesamum indicum flowers.","authors":"Fengli Zhao, Chengqi Cui, Wenxing Wei, Zhenwei Du, Ke Wu, Xiaolin Jiang, Yongzhan Zheng, Yanyang Liu, Hongxian Mei, Haiyang Zhang","doi":"10.1007/s00122-025-04828-9","DOIUrl":"10.1007/s00122-025-04828-9","url":null,"abstract":"<p><p>Anthocyanins not only serve as critical pigments determining floral hues but also play essential roles in attracting insects for pollination, feeding animals and mitigating abiotic stress. However, the molecular mechanisms underlying the regulation of flower color in sesame has not yet been reported. In this study, an F<sub>2</sub> population was constructed by crossing 'Ganzhi 9' (purple-flowered) with 'BS377' (white-flowered). Genetic analysis revealed that purple flower is controlled by a single locus named as SiFC (Sesamum indicum flower color). Using the BSA-seq approach, SiFC was preliminarily identified on chromosome 6, which was further mapped to a 473 kb interval using Kompetitive Allele Specific PCR (KASP) marker analysis. Moreover, functional annotation, expression profiling, and sequence analyses confirmed that the SibHLHA (Sesame10992) was the most likely candidate gene for SiFC. In addition, SibHLHA, highly homologous to AtTT8 (a key regulator in the anthocyanin synthesis pathway), was found to interact with WER-like or TTG1 proteins, enhancing anthocyanin accumulation in tobacco leaves. Furthermore, an SNP in the second exon of Sibhlha (BS377 variant) was found to alter the encoding amino acids, which affected Sibhlha binding to MYB protein and showed low anthocyanin in tobacco leaves compared with SibHLHA binding with WER-like or TTG1 proteins. These findings not only deepen our understanding of the molecular mechanisms controlling sesame corolla color, but also provide valuable insights for developing ornamental and consumable sesame varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 2","pages":"40"},"PeriodicalIF":4.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuntao Yan, Ya Chen, Xiaoya Zhu, Yan Wang, Hui Qi, Jinxin Gui, Haiqing Zhang, Jiwai He
{"title":"The TCP transcription factor TAC8 positively regulates the tiller angle in rice (Oryza sativa L.).","authors":"Yuntao Yan, Ya Chen, Xiaoya Zhu, Yan Wang, Hui Qi, Jinxin Gui, Haiqing Zhang, Jiwai He","doi":"10.1007/s00122-024-04812-9","DOIUrl":"10.1007/s00122-024-04812-9","url":null,"abstract":"<p><p>The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus. RNA-seq revealed that TAC8 is involved mainly in the photoperiod and abiotic stress response in rice. Yeast two-hybrid assays verified that TAC8 interacts with CHLOROPHYLL A/B-BINDING PROTEIN 1, which responds to photoperiod, and haplotype analysis revealed that a 34-bp deletion at position 1516 in the promoter region and a 9-bp deletion at position 153 in the coding region can result in impaired function or loss of function of TAC8. This study provides a new genetic resource for designing ideal plant types with appropriate rice tiller angle.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 2","pages":"39"},"PeriodicalIF":4.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wang, Qianli Pan, Bin Tian, Zitong Yu, Dwight Davidson, Guihua Bai, Alina Akhunova, Harold Trick, Eduard Akhunov
{"title":"Non-additive dosage-dependent effects of TaGS3 gene editing on grain size and weight in wheat.","authors":"Wei Wang, Qianli Pan, Bin Tian, Zitong Yu, Dwight Davidson, Guihua Bai, Alina Akhunova, Harold Trick, Eduard Akhunov","doi":"10.1007/s00122-025-04827-w","DOIUrl":"10.1007/s00122-025-04827-w","url":null,"abstract":"<p><strong>Key message: </strong>Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice. While an association between allelic variation in the GS3 homologs of wheat and grain weight/size has been detected previously, the effects of LOF alleles at TaGS3 on these traits remain unknown. We used genome editing to create TaGS3 mutant lines with varying LOF homeo-allele dosages. Contrary to the results obtained in rice, editing all three TaGS3 homoeologous copies resulted in a significant decrease in grain length (4.4%), width (3.4%), grain area (7.3%) and weight (7.5%), without affecting the number of grains per spike. Compared to the wild type, the highest increase in grain weight (up to 9.6%) and area (up to 5.0%) was observed in homozygous mutants with one or two genomes carrying LOF homeo-alleles, suggesting non-additive suppressive effects of TaGS3 on grain size and weight in wheat. Our results suggest that the regulatory effects of GS3 homologs in wheat and rice have diverged. The newly developed LOF homeo-alleles of TaGS3 expand the set of CRISPR-Cas9-induced variants of yield component genes that have potential to increase grain weight in wheat.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 2","pages":"38"},"PeriodicalIF":4.4,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis).","authors":"Jinwan Zhang, Xue Li, Nan Wang, Hui Feng","doi":"10.1007/s00122-025-04829-8","DOIUrl":"10.1007/s00122-025-04829-8","url":null,"abstract":"<p><strong>Key message: </strong>BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2. Genetic analysis showed that the stay-green trait was controlled by a recessive nuclear gene. We obtained a 550 kb candidate region on chromosome A03 using BSA-Seq and linkage analysis. In this interval, BraA03g049920.3.5C, named BrCYP71, was identified as a candidate gene using sequence variation analysis. BrCYP71 is an ortholog of Arabidopsis AT4G13290, which encodes a multifunctional oxidase. A 4 bp insertion from T to TGATC in the first exon of BrCPY71 in the mutant led to the formation of a stop codon, TAA. Ectopic overexpression of BrCYP71 in Arabidopsis cyp71 could restored the wild-type phenotype. These results indicate that BrCYP71 contributes to the stay-green of nye2. The expression levels of chlorophyll catabolism-related genes in nye2 were significantly reduced compared to those in the wild-type, suggesting that BrCPY71 affected chlorophyll catabolism. Our achievement provides a novel genetic resource for breeding the stay-green varieties of Brassica rapa.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 2","pages":"37"},"PeriodicalIF":4.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weinan Li, Mingjun Zhang, Jingchao Fan, Zhaoen Yang, Jun Peng, Jianhua Zhang, Yubin Lan, Mao Chai
{"title":"Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning.","authors":"Weinan Li, Mingjun Zhang, Jingchao Fan, Zhaoen Yang, Jun Peng, Jianhua Zhang, Yubin Lan, Mao Chai","doi":"10.1007/s00122-025-04821-2","DOIUrl":"10.1007/s00122-025-04821-2","url":null,"abstract":"<p><p>Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton. We compared two SNP dataset down-sampling methods for model training and found that selecting SNPs with an Fscale value greater than 0 outperformed randomly selected SNPs in terms of model accuracy. We further performed machine learning quantitative trait loci (mlQTLs) analysis for 13 traits related to fiber quality and flowering days. These mlQTLs were then compared to those identified through genome-wide association studies (GWAS), revealing that the machine learning approach not only confirmed known loci but also identified novel QTLs. Additionally, we evaluated the effect of population size on model accuracy and found that larger population sizes resulted in better predictive performance. Finally, we proposed candidate genes for the identified mlQTLs, including two argonaute 5 proteins, Gh_A09G104100 and Gh_A09G104400, for the FL3/FS2 locus, as well as GhFLA17 and Syntaxin-121 (Gh_D09G143700) for the FSD09_2/FED09_2 locus. Our findings demonstrate the efficacy of machine learning in enhancing the identification of genetic loci in cotton, providing valuable insights for improving cotton breeding strategies.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"36"},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anju Biswas, Pat Wechter, Venkat Ganaparthi, Diego Jarquin, Shaker Kousik, Sandra Branham, Amnon Levi
{"title":"Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches.","authors":"Anju Biswas, Pat Wechter, Venkat Ganaparthi, Diego Jarquin, Shaker Kousik, Sandra Branham, Amnon Levi","doi":"10.1007/s00122-024-04813-8","DOIUrl":"10.1007/s00122-024-04813-8","url":null,"abstract":"<p><p>Complex traits influenced by multiple genes pose challenges for marker-assisted selection (MAS) in breeding. Genomic selection (GS) is a promising strategy for achieving higher genetic gains in quantitative traits by stacking favorable alleles into elite cultivars. Resistance to Fusarium oxysporum f. sp. niveum (Fon) race 2 in watermelon is a polygenic trait with moderate heritability. This study evaluated GS as an additional approach to quantitative trait loci (QTL) analysis/marker-assisted selection (MAS) for enhancing Fon race 2 resistance in elite watermelon cultivars. Objectives were to: (1) assess the accuracy of genomic prediction (GP) models for predicting Fon race 2 resistance in a F<sub>2:3</sub> versus a recombinant inbred line (RIL) population, (2) rank and select families in each population based on genomic estimated breeding values (GEBVs) for developing testing populations, and (3) determined how many of the most superior families based on GEBV also have all QTL associated with Fon race 2 resistance. GBS-SNP data from genotyping-by-sequencing (GBS) for two populations were used, and parental line genome sequences were used as references. The GBLUP and random forest outperformed the other three parametric (GBLUP, Bayes B, Bayes LASSO) and three nonparametric AI (random forest, SVM linear, and SVM radial) models, with correlations of 0.48 and 0.68 in the F<sub>2:3</sub> and RIL population, respectively. Selection intensities (SI) of 10%, 20%, and 30% showed that superior families with highest GEBV can also comprise all QTL associated with Fon race 2 resistance, highlighting GP efficacy in improving elite watermelon cultivars with polygenic traits of disease resistance.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"35"},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxia Chen, Zhouyang Su, Yunpu Zheng, Cong Li, Jun Ma, Jian Ma, Fusun Shi, Haiyan Hu, Chunji Liu, Zhi Zheng
{"title":"Unveiling the genetic architecture of barley embryo: QTL mapping, candidate genes identification and its relationship with kernel size and early vigour.","authors":"Xiaoxia Chen, Zhouyang Su, Yunpu Zheng, Cong Li, Jun Ma, Jian Ma, Fusun Shi, Haiyan Hu, Chunji Liu, Zhi Zheng","doi":"10.1007/s00122-025-04817-y","DOIUrl":"10.1007/s00122-025-04817-y","url":null,"abstract":"<p><strong>Keymessage: </strong>In this first QTL mapping study of embryo size in barley, novel and stable QTL were identified and candidate genes underlying a significant locus independent of kernel size were identified based on orthologous analysis and comparison of the whole-genome assemblies for both parental genotypes of the mapping population. Embryo, also known as germ, in cereal grains plays a crucial role in plant development. The embryo accounts for only a small portion of grain weight but it is rich in nutrients. Larger embryo translates to a more nutritious grain and larger store of energy reserves, which can benefit seed germination and seedling establishment. However, reports on quantitative trait loci (QTL) affecting embryo size in barley is rare. To understand the genetic basis of embryo size in barley, a population consisting of 201 F9 recombination inbred lines (RILs) was assessed in four environments. Three regions affecting various characteristics of embryo size including embryo length (EL), embryo width (EW) and embryo area (EA) were consistently identified. They located on chromosomes 2H, 4H and 7H, respectively. Among them, the QTL on 7H was not significantly affected by kernel size. Phenotypic variances explained by this QTL for EL, EW and EA were 11.8%, 9.3% and 12.7%, respectively. Taken advantage of the available genomic assemblies of the two parental genotypes, candidate genes for this locus on 7H were identified. In addition, significant correlations between embryo size and early vigour and kernel traits were detected. To our knowledge, the present study is for the first time reporting QTL conferring embryo size by directly measuring the characteristics as quantitative trait in barley, which would broaden our understanding of the genetic basis of barley embryo size and offer valuable targets for future breeding programmes.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"32"},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.","authors":"Chuanxing Wang, Shaohua Chai, Shiru Li, Delong Liu, Huibing Han, Yongjiang Wu, Yujie Li, Zhixiu Ma, Liyuan Zhang, Xiaoli Gao, Pu Yang","doi":"10.1007/s00122-025-04820-3","DOIUrl":"10.1007/s00122-025-04820-3","url":null,"abstract":"<p><strong>Key message: </strong>QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties. This study leveraged genetic linkage maps from two populations: the published RYRIL population (Hongjiugu × Yugu 18) with 1420 bins and the newly established YYRIL population (Huangruangu × Yugu 18) with 542 bins. We identified 17 QTLs associated with bristle length, explaining 1.76-47.37% of the phenotypic variation. Among these, 6 were multi-environment QTLs, and 11 were environment-specific QTLs. Notably, qBL-1-1 and qBL-3-2 were detected in both populations, and exhibited epistasis interactions. By analyzing genotypic data from the RYRIL population and its parents, we identified two lines with significant variation in bristle length at the qBL-1-1 locus, designated CM3 (short) and CM4 (long). RNA-seq during the flowering phase identified 1812 differentially expressed genes (DEGs). Thirty-three DEGs were identified within 6 multi-environment QTL regions, and the RNA-seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Within the qBL-1-1 region, Seita.1G325800 is predicted to be a key candidate gene controlling foxtail millet bristle length. These findings provide preliminary insights into the genetic basis of bristle development and lay a foundation for the genetic improvement of foxtail millet bristle length.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"33"},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O Grace Ehoche, Sai Krishna Arojju, M Z Zulfi Jahufer, Ruy Jauregui, Anna C Larking, Greig Cousins, Jennifer A Tate, Peter J Lockhart, Andrew G Griffiths
{"title":"Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.","authors":"O Grace Ehoche, Sai Krishna Arojju, M Z Zulfi Jahufer, Ruy Jauregui, Anna C Larking, Greig Cousins, Jennifer A Tate, Peter J Lockhart, Andrew G Griffiths","doi":"10.1007/s00122-025-04819-w","DOIUrl":"10.1007/s00122-025-04819-w","url":null,"abstract":"<p><strong>Key message: </strong>Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.), a key forage legume which has shown limited genetic improvement in dry matter yield (DMY) and persistence traits. We used data from a training population comprising 200 half-sibling (HS) families evaluated in a cattle-grazed field trial across three years and two locations. Combining phenotype and genotyping-by-sequencing (GBS) data, we assessed different two-stage genomic prediction models, including KGD-GBLUP developed for low-depth GBS data, on DMY, growth score, leaf size and stolon traits. Predictive abilities were similar among the models, ranging from -0.17 to 0.44 across traits, and remained stable for most traits when reducing model input to 100-120 HS families and 5500 markers, suggesting genomic selection is viable with fewer resources. Incorporating a correlated trait with a primary trait in multi-trait prediction models increased predictive ability by 28-124%. Deterministic modelling showed integrating among-HS-family phenotypic selection and within-family genomic selection at different selection pressures estimated up to 89% DMY genetic gain compared to phenotypic selection alone, despite a modest predictive ability of 0.3. This study demonstrates the potential benefits of combining genomic and phenotypic selection to boost genetic gains in white clover. Using cost-effective GBS paired with a prediction model optimized for low read-depth data, the approach can achieve prediction accuracies comparable to traditional models, providing a viable path for implementing genomic selection in white clover.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"34"},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Malinowska, P S Kristensen, B Nielsen, D Fè, A K Ruud, I Lenk, M Greve, T Asp
{"title":"The value of early root development traits in breeding programs for biomass yield in perennial ryegrass (Lolium perenne L.).","authors":"M Malinowska, P S Kristensen, B Nielsen, D Fè, A K Ruud, I Lenk, M Greve, T Asp","doi":"10.1007/s00122-024-04797-5","DOIUrl":"10.1007/s00122-024-04797-5","url":null,"abstract":"<p><strong>Key message: </strong>Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits. Despite its importance, genetic improvements in biomass yield have been slow, mainly due to its outbreeding nature and the challenges of improving multiple traits simultaneously. This study aims to assess the potential advantages of including early root traits in the perennial ryegrass breeding process. Root traits, including total root length (TRL) and root angle (RA) were phenotyped in a greenhouse using rhizoboxes, and genetic correlations with field yield were estimated across three European locations over two years. Bivariate models estimated significant genetic correlations of 0.40 (SE = 0.14) between TRL and field yield, and a weak but positive correlation to RA of 0.15 (SE = 0.14). Heritability estimates were 0.36 for TRL, 0.39 for RA, and 0.31 for field yield across locations. Incorporating root trait data into selection criteria can improve the efficiency of breeding programs, potentially increasing genetic gain by approximately 10%. This results highlight the potential of early root traits to refine selection criteria in perennial ryegrass breeding programs, contributing to higher yield and efficiency.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"31"},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}