Prediction of biomass sorghum hybrids using environmental feature-enriched genomic combining ability models in tropical environments.

IF 4.4 1区 农林科学 Q1 AGRONOMY
Pedro C O Ribeiro, Reka Howard, Diego Jarquin, Isadora C M Oliveira, Saulo Chaves, Pedro C S Carneiro, Vander F Souza, Robert E Schaffert, Cynthia M B Damasceno, Rafael A C Parrella, Kaio Olimpio G Dias, Maria M Pastina
{"title":"Prediction of biomass sorghum hybrids using environmental feature-enriched genomic combining ability models in tropical environments.","authors":"Pedro C O Ribeiro, Reka Howard, Diego Jarquin, Isadora C M Oliveira, Saulo Chaves, Pedro C S Carneiro, Vander F Souza, Robert E Schaffert, Cynthia M B Damasceno, Rafael A C Parrella, Kaio Olimpio G Dias, Maria M Pastina","doi":"10.1007/s00122-025-04895-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Incorporating environmental features improved the predictive ability of genomic prediction models under multi-environment trials in tropical conditions. Gathering environmental and genomic information can benefit the breeding of sorghum hybrids by overcoming complications imposed by the genotype-by-environment interaction (GEI). In this study, we explored the value of combining environmental features (EFs) and genomic data to enhance predictions for biomass sorghum hybrid breeding, addressing GEI complexities. We also investigated if considering specific time windows for EFs improves the prediction. We used a historical dataset from a tropical biomass sorghum breeding program featuring 253 genotypes across 64 trials. Initially, a first-stage analysis was performed to obtain the adjusted means (EBLUEs) and scrutinize the impact of 29 EFs (geographic, climatic, and soil-related EFs) on GEI. Subsequently, in the second-stage analysis, we used data from 221 hybrids that had both parents genotyped to evaluate the predictive ability and assertiveness of 12 models with different effects. The most relevant EFs included soil organic carbon, insolation on a horizontal surface, longitude, temperature at dew point, and nitrogen content. Across three cross-validation scenarios (CV1, CV0, and CV00), the most effective model encompassed main combining ability effects, GEI, and G <math><mi>ω</mi></math> I (genotype-by-specific environmental effects interaction), utilizing an environmental kinship matrix ( <math><mi>Ω</mi></math> ) derived from mean EF values. Only in CV2, a model with a similar structure but utilizing <math><mi>Ω</mi></math> from specific time windows outperformed others. Our findings highlight the potential of integrating environmental and genomic data to refine predictive models for optimizing biomass sorghum hybrid breeding strategies.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 6","pages":"113"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04895-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Incorporating environmental features improved the predictive ability of genomic prediction models under multi-environment trials in tropical conditions. Gathering environmental and genomic information can benefit the breeding of sorghum hybrids by overcoming complications imposed by the genotype-by-environment interaction (GEI). In this study, we explored the value of combining environmental features (EFs) and genomic data to enhance predictions for biomass sorghum hybrid breeding, addressing GEI complexities. We also investigated if considering specific time windows for EFs improves the prediction. We used a historical dataset from a tropical biomass sorghum breeding program featuring 253 genotypes across 64 trials. Initially, a first-stage analysis was performed to obtain the adjusted means (EBLUEs) and scrutinize the impact of 29 EFs (geographic, climatic, and soil-related EFs) on GEI. Subsequently, in the second-stage analysis, we used data from 221 hybrids that had both parents genotyped to evaluate the predictive ability and assertiveness of 12 models with different effects. The most relevant EFs included soil organic carbon, insolation on a horizontal surface, longitude, temperature at dew point, and nitrogen content. Across three cross-validation scenarios (CV1, CV0, and CV00), the most effective model encompassed main combining ability effects, GEI, and G ω I (genotype-by-specific environmental effects interaction), utilizing an environmental kinship matrix ( Ω ) derived from mean EF values. Only in CV2, a model with a similar structure but utilizing Ω from specific time windows outperformed others. Our findings highlight the potential of integrating environmental and genomic data to refine predictive models for optimizing biomass sorghum hybrid breeding strategies.

利用富含环境特征的基因组配合力模型预测热带环境下生物量高粱杂交种。
关键信息:在热带条件下的多环境试验中,纳入环境特征提高了基因组预测模型的预测能力。收集环境和基因组信息有助于克服基因型-环境相互作用(GEI)带来的复杂性,从而有利于高粱杂交种的选育。在这项研究中,我们探索了将环境特征(EFs)和基因组数据相结合的价值,以增强对生物质高粱杂交育种的预测,解决GEI的复杂性。我们还研究了考虑特定的时间窗是否可以改善EFs的预测。我们使用了来自热带生物质高粱育种计划的历史数据集,其中包含64个试验中的253个基因型。首先,进行了第一阶段的分析,以获得调整后的平均值(EBLUEs),并仔细检查29种EFs(地理、气候和土壤相关EFs)对GEI的影响。随后,在第二阶段的分析中,我们使用221个双亲都有基因型的杂交品种的数据来评估12个不同效果模型的预测能力和自信。最相关的EFs包括土壤有机碳、水平表面日晒、经度、露点温度和氮含量。在三个交叉验证情景(CV1、CV0和CV00)中,最有效的模型包括主要的配合力效应、GEI和G ω I(基因型-特定环境效应相互作用),利用从平均EF值推导出的环境亲缘关系矩阵(Ω)。只有在CV2中,具有类似结构但使用Ω特定时间窗口的模型表现优于其他模型。我们的研究结果强调了整合环境和基因组数据来完善预测模型以优化生物质高粱杂交育种策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信