{"title":"Candidate gene analysis of rice grain shape based on genome-wide association study.","authors":"Wei Xin, Ning Chen, Jiaqi Wang, Yilei Liu, Yifeng Sun, Baojia Han, Xinghua Wang, Zijie Liu, Hualong Liu, Hongliang Zheng, Luomiao Yang, Detang Zou, Jingguo Wang","doi":"10.1007/s00122-024-04724-8","DOIUrl":"10.1007/s00122-024-04724-8","url":null,"abstract":"<p><strong>Key message: </strong>Thirteen QTLs associated with rice grain shape were localized by genome-wide association study. LOC_Os01g74020, the putative candidate gene in the co-localized QTL-qGSE1.2 interval, was identified and validated. Grain shape (GS) is a key trait that affects yield and quality of rice. Identifying and analyzing GS-related genes and elucidating the physiological, biochemical and molecular mechanisms are important for rice breeding. In this study, genome-wide association studies (GWAS) were conducted based on 1, 795, 076 single-nucleotide polymorphisms (SNPs) and three GS-related traits, grain length (GL), grain width (GW) and thousand-grain weight (TGW), in a natural population which comprised 374 rice varieties. A total of 13 quantitative trait locus (QTLs) related to GL, GW and TGW were identified, respectively, of which two QTLs (qGSE1.2 and qGSE5.3) were associated with both GL and TGW. A known key GS regulatory gene, GW5, was present in the interval of qGSE5.3. Based on the qRT-PCR results, LOC_Os01g74020 (OsGSE1.2) was identified as a GS candidate gene. Functional analysis of OsGSE1.2 showed that glume cell width and GW were significantly reduced, and that glume cell length, GL, TGW and single-plant yield were significantly increased in OsGSE1.2 knockout lines than those of wild type. OsGSE1.2 affects rice grain length by suppressing the elongation of glume cell and is a novel GS regulatory gene. These findings laid the foundation for molecular breeding to improve rice GS and increase rice yield and profitability.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajat Pruthi, Chanderkant Chaudhary, Sandeep Chapagain, Mostafa Mohamed Elbasuoni Abozaid, Prabhat Rana, Ravi Kiran Reddy Kondi, Roberto Fritsche-Neto, Prasanta K Subudhi
{"title":"Deciphering the genetic basis of salinity tolerance in a diverse panel of cultivated and wild soybean accessions by genome-wide association mapping.","authors":"Rajat Pruthi, Chanderkant Chaudhary, Sandeep Chapagain, Mostafa Mohamed Elbasuoni Abozaid, Prabhat Rana, Ravi Kiran Reddy Kondi, Roberto Fritsche-Neto, Prasanta K Subudhi","doi":"10.1007/s00122-024-04752-4","DOIUrl":"10.1007/s00122-024-04752-4","url":null,"abstract":"<p><strong>Key message: </strong>In a genome-wide association study involving 269 cultivated and wild soybean accessions, potential salt tolerance donors were identified along with significant markers and candidate genes, such as GmKUP6 and GmWRKY33. Salt stress remains a significant challenge in agricultural systems, notably impacting soybean productivity worldwide. A comprehensive genome-wide association study (GWAS) was conducted to elucidate the genetic underpinnings of salt tolerance and identify novel source of salt tolerance among soybean genotypes. A diverse panel comprising 269 wild and cultivated soybean accessions was subjected to saline stress under controlled greenhouse conditions. Phenotypic data revealed that salt tolerance of soybean germplasm accessions was heavily compromised by the accumulation of sodium and chloride, as indicated by highly significant positive correlations of leaf scorching score with leaf sodium/chloride content. The GWAS analysis, leveraging a dataset of 32,832 SNPs, unveiled 32 significant marker-trait associations (MTAs) across seven traits associated with salt tolerance. These markers explained a substantial portion of the phenotypic variation, ranging from 14 to 52%. Notably, 11 markers surpassed Bonferroni's correction threshold, exhibiting highly significant associations with the respective traits. Gene Ontology enrichment analysis conducted within a 100 Kb range of the identified MTAs highlighted candidate genes such as potassium transporter 6 (GmKUP6), cation hydrogen exchanger (GmCHX15), and GmWRKY33. Expression levels of GmKUP6 and GmWRKY33 significantly varied between salt-tolerant and salt-susceptible soybean accessions under salt stress. The genetic markers and candidate genes identified in this study hold promise for developing soybean varieties resilient to salinity stress, thereby mitigating its adverse effects.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and fine mapping of a QTL-rich region for yield- and quality-related traits on chromosome 4BS in common wheat (Triticum aestivum L.).","authors":"Jinghui Li, Huanhuan Zhao, Minghu Zhang, Chan Bi, Xiaoyuan Yang, Xintian Shi, Chaojie Xie, Baoyun Li, Guangbin Ma, Zhengang Ru, Tiezhu Hu, Mingshan You","doi":"10.1007/s00122-024-04722-w","DOIUrl":"10.1007/s00122-024-04722-w","url":null,"abstract":"<p><p>Yield and quality are important for plant breeding. To better understand the genetic basis underlying yield- and quality-related traits in wheat (Triticum aestivum L.), we conducted the quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) and a high-density genetic linkage map with a 90 K array. In this study, a total of 117 QTLs were detected for spike number per area (SNPA), thousand grain weight (TGW), grain number per spike (GNS), plant height (PH), spike length (SL), total spikelet number (TSN), spikelet density (SD), grain protein content (GPC), and grain starch content (GSC). Among these QTLs, 30 environmentally stable QTLs for yield- and quality-related traits were detected. Notably, five QTL-rich regions (Qrr) for yield- and/or quality-related traits were identified, including the QTL-rich region on chromosome 4BS (QQrr.cau-4B) for eight traits (SNPA, GNS, PH, SL, TSN, SD, GPC, and GSC). The stable QTL-rich region QQrr.cau-4B was delimited into a physical interval of approximately 2.47 Mb. Based on the annotation information of the Chinese spring wheat genome v1.0 and parental re-sequencing results, the interval included twelve genes with sequence variations. Taken together, these results contribute to further understanding of the genetic basis of SNPA, GNS, PH, SL, TSN, SD, GPC, and GSC, and fine mapping of QQrr.cau-4B will be beneficial for gene cloning and marker-assisted selection in the genetic improvement of wheat varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Heuberger, Zoe Bernasconi, Mahmoud Said, Esther Jung, Gerhard Herren, Victoria Widrig, Hana Šimková, Beat Keller, Javier Sánchez-Martín, Thomas Wicker
{"title":"Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination.","authors":"Matthias Heuberger, Zoe Bernasconi, Mahmoud Said, Esther Jung, Gerhard Herren, Victoria Widrig, Hana Šimková, Beat Keller, Javier Sánchez-Martín, Thomas Wicker","doi":"10.1007/s00122-024-04721-x","DOIUrl":"10.1007/s00122-024-04721-x","url":null,"abstract":"<p><strong>Key message: </strong>This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such \"alien\" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Demissew Sertse, Aramde Fetene, Jen Leon, Frank M You, Sylvie Cloutier, Curt A McCartney
{"title":"Tracing post-domestication historical events and screening pre-breeding germplasm from large gene pools in wheat in the absence of phenotype data.","authors":"Demissew Sertse, Aramde Fetene, Jen Leon, Frank M You, Sylvie Cloutier, Curt A McCartney","doi":"10.1007/s00122-024-04738-2","DOIUrl":"10.1007/s00122-024-04738-2","url":null,"abstract":"<p><p>Wheat, particularly common wheat (Triticum aestivum L.), is a major crop accounting for 25% of the world cereal production and thriving in diverse ecogeographic regions. Its adaptation to diverse environments arises from its three distinct genomes adapted to different environments and post-domestication anthropogenic interventions. In search of key genomic regions revealing historic events and breeding significance to common wheat, we performed genome scan and genome-environment association (GEA) analyses using high-marker density genotype datasets. Whole-genome scans revealed highly differentiated regions on chromosomes 2A, 3B, and 4A. In-depth analyses corroborated our previous prediction of the 4A differentiated region signifying the separation between Spelt/Macha and other wheat types. Individual chromosome scans captured key introgressions, including one from T. timopheevii and one from Thinopyrum ponticum on 2B and 3D, respectively, as well as known genes such as Vrn-A1 on 5A. GEA highlighted loci linked to latitude-induced environmental variations, influencing traits such as photoperiodism and responses to abiotic stress. Variation at the Vrn-A1 locus on 5A assigned accessions to two haplotypes (6% and 94%). Further analysis on Vrn-A1 coding gene revealed four subgroups of the major haplotype, while the minor haplotype remained undifferentiated. Analyses at differentiated loci mostly dichotomized the population, illustrating the possibility of isolating pre-breeding materials with desirable traits from large gene pools in the absence of phenotype data. Given the current availability of broad genetic data, the genome-scan-GEA hybrid can be an efficient and cost-effective approach for pinpointing environmentally resilient pre-breeding germplasm from vast gene pools, including gene banks regardless of trait characterization.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Han, Zeng Wang, Bing Han, Yingjun Zhang, Jindong Liu, Yan Yang
{"title":"Allelic variation of TaABI5-A4 significantly affects seed dormancy in bread wheat.","authors":"Yang Han, Zeng Wang, Bing Han, Yingjun Zhang, Jindong Liu, Yan Yang","doi":"10.1007/s00122-024-04753-3","DOIUrl":"10.1007/s00122-024-04753-3","url":null,"abstract":"<p><strong>Key message: </strong>We identified a pivotal transcription factor TaABI5-A4 that is significantly associated with pre-harvest sprouting in wheat; its function in regulating seed dormancy was confirmed in transgenic rice. ABI5 is a critical transcription factor in regulation of crop seed maturation, dormancy, germination, and post-germination. Sixteen copies of homologous sequences of ABI5 were identified in Chinese wheat line Zhou 8425B. Cultivars of two haplotypes TaABI5-A4a and TaABI5-A4b showed significantly different seed dormancies. Based on two SNPs between the sequences of TaABI5-A4a and TaABI5-A4b, two complementary dominant sequence-tagged site (STS) markers were developed and validated in a natural population of 103 Chinese wheat cultivars and advanced lines and 200 recombinant inbred lines (RILs) derived from the Yangxiaomai/Zhongyou 9507 cross; the STS markers can be used efficiently and reliably to evaluate the dormancy of wheat seeds. The transcription level of TaABI5-A4b was significantly increased in TaABI5-A4a-GFP transgenic rice lines compared with that in TaABI5-A4b-GFP. The average seed germination index of TaABI5-A4a-GFP transgenic rice lines was significantly lower than those of TaABI5-A4b-GFP. In addition, seeds of TaABI5-A4a-GFP transgenic lines had higher ABA sensitivity and endogenous ABA content, lower endogenous GA content and plant height, and thicker stem internodes than those of TaABI5-A4b-GFP. Allelic variation of TaABI5-A4-affected wheat seed dormancy and the gene function was confirmed in transgenic rice. The transgenic rice lines of TaABI5-A4a and TaABI5-A4b had significantly different sensitivities to ABA and contents of endogenous ABA and GA in mature seeds, thereby influencing the seed dormancy, plant height, and stem internode length and diameter.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical map of QTL for eleven agronomic traits across fifteen environments, identification of related candidate genes, and development of KASP markers with emphasis on terminal heat stress tolerance in common wheat.","authors":"Sourabh Kumar, Sachin Kumar, Hemant Sharma, Vivudh Pratap Singh, Kanwardeep Singh Rawale, Kaviraj Singh Kahlon, Vikas Gupta, Sunil Kumar Bhatt, Ramanathan Vairamani, Kulvinder Singh Gill, Harindra Singh Balyan","doi":"10.1007/s00122-024-04748-0","DOIUrl":"10.1007/s00122-024-04748-0","url":null,"abstract":"<p><strong>Key message: </strong>Key message This study identified stable QTL, promising candidate genes and developed novel KASP markers for heat tolerance, providing genomic resources to assist breeding for the development of high-yielding and heat-tolerant wheat germplasm and varieties. To understand the genetic architecture of eleven agronomic traits under heat stress, we used a doubled-haploid population (177 lines) derived from a heat-sensitive cultivar (PBW343) and a heat-tolerant genotype (KSG1203). This population was evaluated under timely, late and very late sown conditions over locations and years comprising fifteen environments. Best linear unbiased estimates and a genetic map (5,710 SNPs) developed using sequencing-based genotyping were used for QTL mapping. The identified 66 QTL (20 novel) were integrated into wheat physical map (14,263.4 Mb). These QTL explained 5.3% (QDth.ccsu-4A for days to heading and QDtm.ccsu-5B for days to maturity) to 24.9% (QGfd.ccsu-7D for grain filling duration) phenotypic variation. Thirteen stable QTL explaining high phenotypic variation were recommended for marker-assisted recurrent selection (MARS) for optimum/heat stress environments. Selected QTL were validated by their presence in high-yielding doubled-haploid lines. Some QTL for 1000-grain weight (TaERF3-3B, TaFER-5B, and TaZIM-A1), grain yield (TaCol-B5), and developmental traits (TaVRT-2) were co-localized with known genes. Specific known genes for traits like abiotic/biotic stress, grain quality and yield were co-located with 26 other QTL. Furthermore, 209 differentially expressed candidate genes for heat tolerance in plants that encode 28 different proteins were identified. KASP markers for three major/stable QTL, namely QGfd.ccsu-7A for grain filling duration on chromosome 7A (timely sown), QNgs.ccsu-3A for number of grains per spike on 3A, and QDth.ccsu-7A for days to heading on 7A (late and very late sown) environments were developed for MARS focusing on the development of heat-tolerant wheat varieties/germplasm.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"QTL mapping and omics analysis to identify genes controlling kernel dehydration in maize.","authors":"Xining Jin, Xiaoxiang Zhang, Pingxi Wang, Juan Liu, Huaisheng Zhang, Xiangyuan Wu, Rui Song, Zhiyuan Fu, Shilin Chen","doi":"10.1007/s00122-024-04715-9","DOIUrl":"10.1007/s00122-024-04715-9","url":null,"abstract":"<p><strong>Key message: </strong>This study mapped and screened three candidate genes related to kernel dehydration in maize. The slow development rate of maize kernels during later stages leads to high kernel moisture content at harvest, posing a challenge for mechanized maize harvesting in China. This study utilized a recombinant inbred line population derived from Zheng 58 (slow dehydration) and PH6WC (fast dehydration) as parents. After four years of trait investigation and analysis, 25 quantitative trait loci (QTLs) associated with kernel dehydration rate and moisture content were identified, with six QTLs showing a significant contribution value exceeding 10% in the phenotype. Furthermore, a comparison was made between the QTLs identified in this study and those from previous research on maize kernel moisture content and dehydration rate, followed by screening through the omics analysis of the parental lines. Three candidate genes related to kernel dehydration rate were identified, primarily involving carbohydrate metabolism, energy metabolism processes (Zm00001d014030 and Zm00001d006476), and stimulus resistance (Zm00001d040113). These findings provide valuable insights to assist and guide future breeding efforts for mechanical harvesting of maize.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Fraher, Tanner Schwarz, Chris Heim, Gabriel De Siqueira Gesteira, Marcelo Mollinari, Guilherme Da Silva Pereira, Zhao-Bang Zeng, Gina Brown-Guedira, Adrienne Gorny, G Craig Yencho
{"title":"Discovery of a major QTL for resistance to the guava root-knot nematode (Meloidogyne enterolobii) in 'Tanzania', an African landrace sweetpotato (Ipomoea batatas).","authors":"Simon Fraher, Tanner Schwarz, Chris Heim, Gabriel De Siqueira Gesteira, Marcelo Mollinari, Guilherme Da Silva Pereira, Zhao-Bang Zeng, Gina Brown-Guedira, Adrienne Gorny, G Craig Yencho","doi":"10.1007/s00122-024-04739-1","DOIUrl":"10.1007/s00122-024-04739-1","url":null,"abstract":"<p><p>Sweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is among the world's most important food crops and is North Carolina's most important vegetable crop. The recent introduction of Meloidogyne enterolobii poses a significant economic threat to North Carolina's sweetpotato industry and breeding resistance into new varieties has become a high priority for the US sweetpotato industry. Previous studies have shown that 'Tanzania', a released African landrace, is resistant to M. enterolobii. We screened the biparental sweetpotato mapping population, 'Tanzania' x 'Beauregard', for resistance to M. enterolobii by inoculating 246 full-sibs with 10,000 eggs each under greenhouse conditions. 'Tanzania', the female parent, was highly resistant, while 'Beauregard' was highly susceptible. Our bioassays exhibited strong skewing toward resistance for three measures of resistance: reproductive factor, eggs per gram of root tissue, and root gall severity ratings. A 1:1 segregation for resistance suggested a major gene conferred M. enterolobii resistance. Using a random-effect multiple interval mapping model, we identified a single major QTL, herein designated as qIbMe-4.1, on linkage group 4 that explained 70% of variation in resistance to M. enterolobii. This study provides a new understanding of the genetic basis of M. enterolobii resistance in sweetpotato and represents a major step towards the identification of selectable markers for nematode resistance breeding.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and variation of a new restorer of fertility gene that induces cleavage in orf138 mRNA of Ogura male sterility in radish.","authors":"Hiroshi Yamagishi, Ayako Hashimoto, Asumi Fukunaga, Mizuki Takenaka, Toru Terachi","doi":"10.1007/s00122-024-04736-4","DOIUrl":"10.1007/s00122-024-04736-4","url":null,"abstract":"<p><strong>Key message: </strong>A new restorer of fertility gene, Rfs, of Ogura cytoplasmic male sterility (CMS) in radish encodes a pentatricopeptide repeat protein that binds to 15 nucleotides in mRNA of the CMS gene, orf138. Nucleotide substitutions in both Rfs and orf138 determine effectiveness and specificity of restoration. Cytoplasmic male sterility (CMS) in plants caused by the expression of abnormal mitochondrial genes results from impaired pollen production. The manifestation of CMS is suppressed by the restorer of fertility (Rf) genes in the nuclear genome. Thus, the CMS-Rf system is a suitable model for studying the direct interactions of mitochondrial and nuclear genes. At least nine haplotypes, of which Type B is ancestry, have been reported for the Ogura CMS gene, orf138, in radish (Raphanus sativus). We previously observed that Rfo encoding a pentatricopeptide repeat (PPR) protein, ORF687, which inhibits the translation of orf138 is ineffective in one haplotype (i.e., Type H). Here, we carried out map-based cloning of another Rf gene (Rfs) that cleaves the orf138 mRNA of Type H. Rfs produces a PPR protein consisting of 15 PPR motifs that binds to the mRNA, cleaving the mRNA at about 50nt downstream of the binding site. However, Rfs was ineffective for Type A because of a single nucleotide substitution in the binding site. Both Rfo and Rfs suppress orf138 expression in ancestral Type B, but they are rendered ineffective in Type H and Type A, respectively, by a single nucleotide substitution in orf138.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}